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Abstract
This paper considers approaches to considering the validity of the overall structure of macro-econometric
models � specifically, the Area Wide Model of the European Central Bank.  By structure, we refer to the
dynamic (business-cycle) and steady-state features that the model purports to capture. This leads to two
types of tests. The first, drawing on the DSGE literature, is concerned with whether the model matches
business-cycle (high-frequency) data characteristics. This is implemented by a Cholesky bootstrap
whereby the steady state of the model is stochastically simulated using historically consistent co-
variances. The generated data is analysed for stylised-facts fitting and, similarly, using the model�s
implied spectral characteristics, for congruence with the data in terms of persistence, periodicity and
spectral fit. Moments matching, however, is only one aspect of overall model evaluation. Consequently,
we move to tests that combine high-frequency aspects (short-horizon forecasts) with long-run features
(such as the existence and identification of steady states and trends). Recursive forecasting tests form the
second part. The forecasts attempt to measure the accuracy of model-based forecasts both simulated out-
of-sample and in an in-sample exercise. The out-of-sample exercise analyses the 1- to 8-step-ahead
forecasting ability of the model. For this, the model is re-estimated each time on a subset of the original
sample, and the re-estimated model is used to generate a forecast over the remaining sample. The in-
sample exercise omits the re-estimation step but performs a more thorough exercise, covering 1- to 12-
steps-ahead forecasts over a larger part of the original sample. For this latter exercise, a thorough analysis
of sources of forecast error is made. Both exercises incorporate alternative residual-projection methods, in
order to assess the importance of unaccounted-for breaks in forecast accuracy. Conclusions reached are
that, on the one hand, in-sample exercises should be preferred with systems of this size and typical
samples; and, on the other, that mechanical residual adjustment or model re-estimation should be avoided
except under strong evidence of mis-specification.  The paper considers the testing procedure to be one
applicable to the class of large, macro models and therefore of general interest.
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1. Introduction

In this paper, we document some recent testing framework that has been applied to the
Area Wide model (AWM) of the European Central Bank (Fagan et al, 2001). The
AWM can be considered as a mix of 'old' and 'new'. On the one hand, it is clearly
embodies some Keynesian features: dynamics are mostly backward-looking and with
the specific aim of 'fitting the data'. On the other hand, it can be considered modern-
style in that it takes a system-wide view on long-run properties, which are based on
clear, theoretical underpinnings. In common with models in this class, a large part of
the steady state implicit in the model hinges on calibrated parameters. Therefore, the
model embodies both short- and long-run mechanisms: the short run steers the model
according to data-fitting criteria, and the long run according to theory.

Whatever its specific features, though, the AWM is a quantitative tool and, as such,
should be subject to a testing apparatus. This apparatus should be designed in order to
capture both aspects of data-fitting and theoretical coherence, and, in so doing,
comment on the validity of the model�s overall �structure�. Structure is a word used in
economic analysis to refer to many different concepts. The notion of structure, for
instance, appears in the context of whether one can recover all the information from a
structural VAR using the standard one by imposing enough restrictions on the latter.
Thus, the term essentially refers to the imposition of economically meaningful
restrictions (e.g., theoretical parameter constraints, causal structure, endo/exog
distinction etc) that allows unique identification of a simultaneous system of
equations. Hence, structure is a system property. Macro-models are not strictly
speaking VARs but they, nevertheless, embody what we might consider structural
features. Moreover, it certainly makes sense to think of proper tests on them being
system-wide.

To proceed, we draw on a number of given methodologies. First, in line with the
Dynamic Stochastic General Equilibrium (DSGE) literature, we are concerned with
whether the model matches cyclical characteristics of the data. This is implemented
by a Cholesky bootstrap whereby the steady state of the model is stochastically
simulated using historically-consistent co-variances. The resulting outputs are flittered
through both time and frequency-domain metrics. Moments matching, however, can
only take us so far in system evaluation; �well-matching� models need not necessarily
have any sensible structure or steady state. Thus, we move to tests that combined
high-frequency aspects (short-horizon forecasts) with long-run features (such as the
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existence and identification of steady-states and trends). Recursive forecasting tests
form the second part of our testing methodology. However, both types of analyses try
to capture the same thing � the validity of the model�s structure. To reiterate, the
business-cycle tests capture short-run phenomena but are carried out on the model�s
steady state whilst the forecasting tests are conducted on historical samples but try to
capture the validity of the steady state implicit in the model.

In analysing the model, it is thus necessary to exert particular care in evaluating the
extent to which the model matches the data. The standard approach in the DSGE
literature is to propose a fully articulated theoretical model of the economy predicated
on the behaviour of an optimising representative agent in an economy under an
evolving equilibrium. The first-order conditions of the problem, together with
assumptions regarding the shocks hitting the economy, define the model�s steady state
and its dynamic responses. At first sight, drawing from such an approach might seem
unattractive. The testing apparatus of DSGE models reflect specifications that are
small, highly theoretical and calibrated to match �deep� parameters. That a typical
macro-model can and should be evaluated in that vein can be motivated by some
simple algebra. Assume a linear model summarised in (1), in the form of a (log-)
linear approximation to the cyclical behaviour of the model, i.e. of the deviations from
steady state.

[ ] tttt zCxBxA ⋅+⋅=Ε⋅ +1 (1)

Model (1) postulates a dynamic, theory-based relationship between time t and t+1
among variables in vector xt, some of whose elements are pre-determined but others
have endogenous expectations, and variables in zt assumed pre-determined.1 Matrices
in (1), as is standard, contain elements constrained by the theory underlying the
model, including steady-state conditions. The number of parameters tends to be small
and largely calibrated. In this case, any statistic generated by the model can be
compared with its corresponding data-based statistic. Model (1) can be solved
following a number of methodologies, of which linear techniques are widespread
(e.g., Blanchard and Kahn, 1980, Klein, 1999, Juillard, 1999). Such techniques
transform the system into the equivalent backward-looking system in (2), where yt

contains the non-pre-determined elements in xt, and kt the pre-determined ones.

                                                          
1 Expectations of pre-determined variables may differ from actual values, but only by an exogenous un-
forecastable process.
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Expression (2) can be taken to the data and doing so is becoming increasingly popular
(e.g., Smets and Wouters, 2002).

ttt

ttt

zQkPk
zNkMy
⋅+⋅=
⋅+⋅=

+1

(2)

In terms of (1) and (2), the AWM in its current version could be interpreted as a
model in which all variables except one (the exchange rate) are pre-determined, a
most unlikely assumption. In this respect, standard DSGE techniques might not seem
to be of any particular interest in analysing the model. There is, however, an
alternative view by which the AWM does not necessarily embody the unpalatable
assumption mentioned before. A line of defence of the model, probably preferred by
old-style econometricians, is that the model embodies endogenous expectations, but
that these are embedded in its structure.2 Heuristically, this can be understood if the
first equation in system (2) leaded one period is used to solve for expectations of yt in
(1), leading to (3). System (3) is now a system in which endogenous expectations
have disappeared, which means that it can be solved without reference to the future.
(Leads of pre-determined variables pose no problem in this respect.)
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Within this framework, the AWM can be understood as a model in which endogenous
expectations have been solved out (in terms of pre-determined variables) and
embedded in the system. The problem with this approach, though, is that the
embedding process implicitly transforms all the matrices in the system, whose true
structural form cannot afterwards be recovered because there is no one-to-one
mapping between the original structural form of the system and the mentioned semi-
reduced form. In other words, the structural form of the model is a linear combination
of the true structural matrices in which expectations and frictions in the economy can
no longer be disentangled. The AWM in its backward-looking form, thus, becomes
the representative of a family of forward-looking theoretical models: those whose
structure after eliminating expectations would be compatible with the AWM.
Nevertheless, the important point is that within this framework, it is now possible to
                                                          
2 In that sense, the model, though essentially a large-scale VAR or VECM, can be thought of as an
empirical approximation to optimised decision rules and loss functions typical of DSGE models.
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understand why applying standard DSGE approaches to the analysis of the AWM is
not necessarily uninteresting.

The first set of model analysis exercises takes precisely this approach. As is done
customarily in DSGE studies, the business cycle properties of the AWM model are
analysed by means of statistics extracted from stochastic simulations, to investigate
whether business-cycle characteristics present in the data can be replicated. This we
examine in two ways: first, the standard moments and cross-correlations exercises,
second, an examination of the periodicity and long-run variance properties implied by
the model and data.

The second set of tests attempts to measure the model�s predictive accuracy. Again,
this exercise must be understood in the context of the family of theoretical models the
AWM represents. Assuming that model (1) is the 'true' data generating process, in the
sense that it is able to capture a sufficient set of relevant empirical features in the data,
it is intuitive to expect that it would be able to provide forecasts of above-average
quality, at least provided that these features remain in the future. Otherwise, it could
be argued whether empirical features captured by the model are truly relevant.
Obviously, structural breaks and important policy changes may render the model
obsolete and severely affect its usefulness, and this has to be taken into account to the
extent possible. However, claiming that a model is a correct representation of the data
whose forecasts can systematically be improved upon with alternative models is a
contradiction. To the extent that the AWM is a representative of the 'correct' model of
the economy, therefore, it should inherit 'good' forecasting properties. The second
exercise thus tries to exploit this intuition by exploring the model�s forecasting
performance, focusing in particular on possible gains made in forecasting by the
presence of explicit steady-state conditions.

The organisation of the paper is as follows: Section 2 briefly discusses the Area Wide
Model. Section 3 provides background to a discussion of the stylised facts in
business-cycle analysis. Section 4 discusses the method of stochastic simulation used
to derive and bootstrap the various outcomes against which we can judge the
matching of historical stylised facts, with Section 5 reporting results of the exercise.
Section 6 supplements the analysis by analysing spectral density measures. Section 7
describes the forecasting exercise. Section 8 concludes.
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2. The AWM: Data and Specification

The AWM treats the euro area as a single economy. Its structure is standard, having a
long-run classical equilibrium with a vertical Phillips curve but with some short-run
frictions in price/wage setting, factor demands etc. Consequently, activity is
determined in the short run by demand � given incomplete nominal adjustment � but
supply determined in the longer run with employment having converged to a level
consistent with the exogenously given level of equilibrium unemployment. In
addition, stock-flow adjustments are accounted for, e.g. by the inclusion of a wealth /
cumulated saving term in consumption. At present, the treatment of expectations in
the model is limited; with the exception of the exchange rate  (modelled by uncovered
interest parity) the model embodies backward looking expectations. The AWM is
estimated using the ECB�s area-wide database. This data has been widely used in
other publications: inter alia, Stock et al. (2002), Coenen and Wieland (2000), Galί et
al. (2001), Camba-Méndez and Rodriguez-Palenzuela (2002). Applications of the
model include examining the performance of policy rules and the monetary
transmission mechanism (Dieppe and Henry, 2002; McAdam and Morgan, 2002), real
exchange rate determination (Detken et al., 2002), Phillips curve estimation
(McAdam and Willman, 2002).

3. Stylised Facts of Business-Cycle Analysis.

Documentation of �stylised facts� has a long tradition in empirical business-cycle
research. Such facts summarise the main regularities in the macroeconomic variables
and describe volatility (measured by standard deviations), persistence (auto-
correlation) and co-movements (cross-correlations) between macro variables.
Delineating these facts help develop and test theories of the business cycle (Bachus
and Kehoe, 1992), build leading indicators (Stock and Watson, 1993) and, importantly
in our context, calibrate and evaluate macro-econometric models (Watson, 1993,
Canova, 1994, Brayton et al., 1997, Camba-Méndez and Pearlman, 1998, Roeger,
1999, Amano et al., 2000).

Standard macro stylised facts might include the following: 3

                                                          
3 For other attempts to catalogue stylised facts, inter alia, Danthine and Donaldson (1993) and Fisher and
Whitley (1998).
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•  Consumption is less volatile than output. This accords with the literature on
consumption smoothing (i.e., Permanent Income and Life-Cycle Hypotheses) and
is widely reported e.g. Kyland and Prescott (1990), Bachus and Kehoe (1992). It
also appears that non-durable consumption is substantially less volatile than total
consumption. Government consumption is considered more variable than output
(Bachus and Kehoe, 1992) and acyclical (Cooley, 1997).

•  Investment is around 2 to 4 times more volatile than and strongly correlated with
output, (Mendoza, 1991). It is also appears to be pro-cyclical and co-incident. This
accords, for example, with multiplier-accelerator models.

•  The relationship between real and nominal magnitudes (i.e. output and prices) has
been controversial. If demand shocks to output dominate those of supply then the
price � output relationship would tend to be pro-cyclical, otherwise counter-
cyclical. Indeed this type of partitioning has proved popular in VAR identifying
work, Blanchard and Quah (1989). Judging by economic theory, under Keynesian
reasoning such a relationship should be pro-cyclical given the Phillips Curve. In
the Real Business Cycle literature, however, this correlation is assumed negative
lending support to the supply-shocks interpretation (Cooley and Ohanian, 1991,
Backus and Kehoe, 1992). Chada and Prasad (1994) however partly reconciled
these views (and the demand v. supply debate) by suggesting that de-trended
prices were strongly counter-cyclical but that there was a positive correlation
between inflation and the trend deviation of output. In a similar vein, den Haan
(2000) suggested that the correlation was positive in the short-run (i.e. demand
dominated) but negative in the long-run (i.e. supply-shocks dominate). Overall,
the counter-cyclicality of prices is now a widely accepted stylised fact. Cooley and
Ohanian (1991), furthermore, find this negative correlation to be robust to
different de-trending methods and Boone and Hall (1999) find prices counter-
cyclical particularly in the post-war period using their stochastic trend method.4 In
terms of dynamic relations, Prices are generally less volatile than output, with the
exception of high inflation countries, Christodoulakis et al. (1995) and Boone and
Hall (1999). Cooley and Hansen (1994) furthermore suggested that prices lead
output, and that inflation lags GDP.

•  The (GDP deflator) mark-up over marginal costs is conventionally regarded as
counter-cyclical (Rotemberg and Woodford, 1991, Oliveira Martins et al., 1996a)
though with clear differences across sectors (Oliveira Martins et al., 1996b).

•  There appears a weak money-output correlation over time, Garrat and Scott
(1996). Furthermore, nominal short-term interest rates lead real output, Fuhrer and

                                                          
4 See also Ravn and Sola (1995).
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Moore (1995). This might be consistent with borrowing rates effecting marginal
investment decisions or authorities pre-emptively using monetary policy to control
inflation and output. Cooley and Quadrini (1999) and Cooley and Hansen (1998)
further suggest a strong negative monetary growth and nominal interest rates
correlation (the so-called Liquidity Effect). Notably, for the euro area, Nicoletti-
Altimari (2001) finds that money leads inflation. Finally, Diebold and Li (2002)
suggest that short rates are more volatile and less persistent than long rates.

•  On the labour-market side, unemployment (vacancies) is counter-cyclical (pro-
cyclical) and lags (leads) real output, Fisher and Whitley (1998). This leads to the
familiar negative relationship between unemployment and vacancies over the
cycle: the Beveridge curve. Other notable stylised facts of labour markets have
been the suggestion that productivity is more variable than real wages (Andolfatto,
1996), that private- is more volatile than public employment as well as the aspect
of labour hoarding on employment variability over the cycle (Burnside et al.
1993). Notably, real wages also tend to be weakly correlated with output. This is
in line with the criticism of early DSGE models: that the required intertemporal
substitution of labour supply exceeded that found in data (Ball, 1990).

Of course, the existence of stylised facts at the euro-area level, presupposes the
existence of a euro-area business cycle.5 Whether there has been an improved
correspondence of business cycles across European Union countries (i.e. effectively a
euro-area business cycle) in recent times is still a matter of debate � compare the
sceptical Dickerson et al. (1998) with Christodoulakis et al. (1995), Artis and Zhang
(1997) and Peersman and Smets (2001). However, with a common monetary policy
now operating among the EU11 geared towards euro-area aggregates, the question of
whether we can identify aggregate business-cycle regularities that might inform
policy and be reflected in models is, therefore, of special importance. Although there
has been a considerable literature analysing stylised facts for other countries and areas
(e.g., Basu and Taylor, 1999, Christodoulakis et al., 1995), there has been necessarily
less work at the euro-area level and none in conjunction with euro-area modelling.

                                                          
5 See also Agresti and Mojon (2001).
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4.          Model Evaluation Using Stochastic Simulation

4.1 Methodology for Stochastic Simulations

To evaluate the model�s ability to replicate these stylised facts we use stochastic
simulation.6 The technique for generating the stochastic shocks involves reproducing
the characteristics of the observed random disturbances over the historical sample
period � but adapted for use with non-linear rational expectations models. In
particular, we used the Cholesky identification scheme.7

Given a generalised non-linear model, ititti vxy =Γ ),,( θ , i=1,�,n and  t=1,�T.

Where yt is an n-vector of endogenous variables, xt is a vector of predetermined
variables (exogenous and lagged endogenous), θi is a vector of coefficients, vit is an
error term and the function iΓ  may be non-linear in the variables and coefficients .

Assume that the first m equations (m<n) are stochastic, whilst the rest are identities or
quasi-identities.8 Given the vector of historical residuals in selected behavioural

equations, we derive the variance-covariance matrix, Ω as '1 ∧∧
vv

T
 where 

∧
v  is the m*T

matrix of values of vit Tt ,..1=∀ . A Cholesky decomposition is then performed on Ω,

generating the lower-triangle matrix, L: LL' = Ω. From a random number generator
we make drawings from a standard Normal distribution, k, k ~ N (0,1).  The shocks
applied to the model (v*) are drawn from the pre-multiplication of the decomposition
of the historical variances and the random number generated: v*=Lk � these have the
same properties of the original historical co-variance matrix: E (v*v*') = Ω. Having
drawn up the appropriate matrix of historical innovations, we can then set up a
replication procedure.  For each vector of shocks at period t, the model is simulated
from the start date to the date of the simulation period, and agents form expectations
of the future based on their information set at t. We then make the transition to period
t+1 and update the information set and repeat over the whole replication sample.  So
for each replication, a set of shocks are drawn, the model is simulated, time is

                                                          
6 Adelman and Adelman (1959) provide an early reference for the stochastic business-cycle analysis of
macro-models
7 This method has been widely applied to the stochastic simulation of macro-models � inter alia, Frenkel
et al. (1989), Masson and Symansky (1992), Bryant et al. (1993), Hughes-Hallett and McAdam (2001).
8 Thus, in line with Fair (1998) and others, we do not shock identities or quasi-identities such as policy
rules, the term structure or the uncovered interest parity condition etc. Such equations are typically not
estimated but imposed or calibrated. Consequently, their residuals do not have the usual interpretation of
recoverable innovations.
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advanced and then another set of shocks drawn and so on.9  The agents' information
set (at t) contains all data up to and including t (that is, including any expectations
formed at t). To deal with rational expectations, we use the Stacked Time algorithm,
Juillard et al. (1998). In practice the STACK for the stochastic simulation is set well in
advance of the actual simulation horizon to isolate the dynamic trajectory of the
model from arbitrary terminal conditions. (We run 400 replications over 100 years).
Note, that there was no truncation of the distribution of results due to failed
replications (from non-linearity, numerical instability, illegal arithmetic etc) � see the
discussions in Fisher and Salmon (1986), McAdam and Hughes-Hallett (1999).

For each replication, j, we thus obtain a solution for endogenous variable i: j
ity  with

expected value over all replications, �
=

J

j

j
ity

J 1

1 . In constructing our results, we ran each

simulation over a 100 year time period then discarded the first and last 35 yearly
observations from each replication to remove any biases that might arise from starting
or finishing each simulation from particular values. This is standard practice (e.g.,
Bryant et al., 1993) and leaves a sample dimensioned to the historical one. Finally,
and as is equally standard, the stochastic simulations are performed on the model�s
steady state horizon to remove the effect of arbitrary historical conditions.

Thus, shocks distributed according to the historical distribution of residuals are
applied to selected behavioural equations. These comprise: real Consumption and real
Investment; the GDP, Consumption, Investment, Export and Import deflators, real
Import and Export demand, nominal Wages and Employment. Notably, we cannot
expect the stochastically-simulated model to replicate all the variability in sample data
since (a) only m of the n equations are shocked (b) the model is essentially a closed-
economy one precluding some important sources of variability and, similarly, (c)
certain variables (such as government expenditure, commodity prices etc) are
exogenous.

                                                          
9 Thus, (real and nominal) exogenous variables remain exogenous and are extrapolated into the steady
state using conventional balanced growth closures.
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5. Historical and Simulated Stylised Facts

5.1 Historical Stylised Facts

In Table 1, we can see many of the afore-mentioned stylised facts for key variables
(y) when transformed into covariance stationary processes. We use deviations from
the well-known HP filter: Y= y - HP(y) 10. Pro-cyclicality (counter-cyclicality)
between Yt and Xt implies corr (Yt, Xt)>0 (<0). Furthermore, if a series is a �lagging
indicator�, its highest correlation with Real GDP occurs after the contemporaneous
realisation of output � i.e., ),(max

0 kttk
XYcorr +>

.

[Table 1]

Most series appear pro-cyclical with the exception of the nominal exchange rate, the
price level, unit labour costs, the mark up, nominal wages, unemployment and all
interest-rate series. Real Public consumption and nominal money balances, however,
appear acyclical. Furthermore, most series appear to be contemporaneous. Series that
appear to be leading (lagging) indicators of the output cycle are the price level, unit
labour costs, nominal wages and all interest rate series (Inflation, the exchange rate
series, real wages, employment and unemployment). On volatility, most series are less
volatile than output with the exception of investment and the trade, exchange and
interest rate variables. All series are highly persistent as judged by their AR (1)
values.

5.2 Model-Generated Stylised Facts

Table 2 displays the moments generated by the stochastic simulation (described in
section 4).11 Broadly speaking, the model performs well. Those series, which were
pro- or counter-cyclical in the data, remain so as do those that were leading or lagging

                                                          
10 The HP filter minimises the following loss function for a given smoothing parameter λ:

[ ]� −+−
T

t
ttt Ly 222 ))1(()(min γλγ

γ

. Where γt represents the trend of yt series and L is the lag operator.

Essentially this function trades off goodness-of-fit, )( tty γ−  against trend smoothness, 
tL γ2)1( − . The

allowance for the latter is thus increasing in λ. At extremes, we have linear-trend (λ→∞) and perfect-
interpolation (λ→0) cases. For a common comparison, we apply this filter to both our historical and
stochastically-simulated data.
11 The simulated results in Table 2 exclude money (real and nominal) and real government consumption
since these series are either exogenous in the model or omitted.
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the output cycle. Similarly, the ratio of second moments and AR properties are largely
in line with the historical data.

[Table 2]

Comparing cross-correlations across data and models in a more exact manner,
however, is a typically difficult exercise. For instance, any such fixed statistical metric
is bound to suffer relatively low power.12 Consequently, we make use of our various
stochastic replications and its resulting bootstrap: that is to say, having accumulated
each point estimate from the individual stochastic replications � i.e.,

),(),1(, ijijijij XYcorrARσ � we then sort them and draw up the resulting distribution.

We can then judge supporting hypotheses � e.g., ( ) ( )modeldata
1 : ⋅≥⋅ corrcorrH  � and

their associated probability-values etc. Thus, we construct the usual bootstrap test by

finding U
T

L
T ττ ,  such that 

2
1)Pr( ατρ −=≤ U

T ,
2

1)Pr( ατρ −=≥ L
T , where α−1 is the

chosen confidence level for the Lower (L) and Upper (U) regions and T denotes
sample size. Consequently, historical moments which appear in extreme values for the

percentile (i.e., > α−1 or >
2

1 α− ) indicate statistically significant differences.

It can be seen that in many cases the differences are insignificant (i.e., with
probability values > 0.05). Table 2 reports a matrix of 209 p-values for which 135 are
insignificantly different from the historical data � a �success� rate of 65%. This would
appear to be at least competitive with other models in this class (e.g., Brayton et al.,
1997, Roeger, 1999). There are, however, some important points. For instance,
persistence values are generally lower (and statistically different) in the stochastically-
generated data than in history; we might, however, expect there to be more persistence
mechanisms (and deviations from trend) in-sample than could be simulated in a
(largely) linear model which also incorporates stabilising mechanism (error-correction
terms, stabilising policy feedback rules etc). Similarly, the variability of the simulated
                                                          
12 For instance, Walpole and Myers (1978) suggest testing the individual significance of the correlation

coefficients at different lags and leads with the transform ( )( )
( )( ) ��

�

�
�
�

��
�

	



�

�

+−
−+−

ms

ms

rr
rrT

11
11ln

2
3 . Where T is

sample size, and sr and mr are the sample and model-generated correlation coefficient respectively.
Under the null of ms rr = , the statistic follows a standard normal distribution. One problem with this
statistic, however, is that the mr  value comes from a distribution (i.e., the various Stochastic simulations)
and thus has sampling distribution and size aspects. Failure to control for these leaves the statistic and its
inference potentially un-robust and uncertain. For this reason, we use the bootstrapped comparison.
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data � accounting for around 70% of actual output variability, (0.8602/1.027)2 � falls
below13 that of history and thus would be statistically different. This lack of
variability could be a casualty of the non-modelling of key variables (such as the
foreign sector, commodity prices etc) as well as the fewer (compared to history)
propagation mechanisms found in models. However, the cross-correlations are, in the
large majority of cases, insignificantly different from the data and this is also true of
the AR(1) parameters; interestingly, the interest series all fail this criteria.

Furthermore, , whilst in the historical data, both exchange rate series (nominal wages)
lag (lead) the cycle, the same series from the stochastic simulation are
contemporaneous. Although the interest rate series are robustly counter-cyclical (as
judged by the stream of high and negative output cross-correlations), the actual
contemporaneous value is relatively weak and � in the case of the short rate � of the
wrong sign. Allied to this is the fact that the auto-regressions of the interest rate series
are all significantly different (and lower) than history.14 Plausible reasons for this
include the fact that in the model�s (Taylor) monetary policy rule the smoothing
parameter on interest rates is set to zero; we know, however, from empirical studies �
e.g., Clarida et al. (1998) � that this parameter is typically estimated at around 0.6 -
0.9. The fact that we do not represent this gradualism may imply too little persistence
in the short rate.

6. Frequency Domain Analysis.

6.1 Overview

Hitherto we have worked in the time domain, but frequency-domain (or spectral
analysis) has also been suggested as a means of model evaluation (e.g., Watson, 1993,
Diebold et al., 1998).15  Though any time series can be (Fourier) transformed into its
spectral representation, working directly in the frequency domain gives further insight
into the model�s dynamic and business cycle features and, in particular, how

                                                          
13 Notably, King and Rebelo (1999) find that there model accounts for a similar degree of output
variability.
14 Given the strong link between interest rate movements and exchange rates � and hence trade volumes
and relative prices � the trade and exchange rate variables are also significantly different in volatility.
15 Of course, any covariance stationary process has both a time and frequency domain representation.
However, explicitly dealing in the frequency domain is useful for expositional purposes and allows us to
encompass some related literature.
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important cycles of different frequencies are in accounting for its behaviour,
periodicity and long-run variance.

At the outset, however, let us motivate the conditions under which their application to
macro models is valid. Assume that linearising ititti vxy =Γ ),,( θ , yields,

tttt vxyy ++= −− 1111 θθ ;substituting back to an arbitrary date, we see more clearly the

sources of cyclical behaviour involved: � �
−

=

−

=
−− ++=

1

0

1

0
12101

t

j

t

j
jt

j
jt

jt
t vxyy θθθθ . Thus, we

have essentially three sources of cyclical behaviour: initial conditions, 01 ytθ , and that

associated with the cyclical path and characteristics of the truly exogenous variables

and the underlying shocks: �
−

=
−

1

0
21

t

j
jt

j xθθ and �
−

=
−

1

0
1

t

j
jt

jvθ respectively.  Since the way in

which the exogenous variables are set/extrapolated may or may not contain complex
elements � depending on how the user defines them � our focus rests inevitably on the
errors and initial conditions. On initial conditions, although the effect of initial
impacts decay, 0lim 1 →∞→

t

t
θ , there is an underlying cyclical dynamic � since

1
1

−Λ= ψψθ tt , where ( )jt diag λ=Λ , which implies that each endogenous variable is a

linear combination of the powers of all the eigenvalues in the system whose complex
part will induce cyclical behaviour. For the residuals, we have 0)( =tvE and

�
�
�

=Π
≠

=−− ji
ji

vvE jtit

0
)( '

, . Thus, defining �
=

−=
T

j
jt

jvh
0

1θ , we have

')',( 1

1

1
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k
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k

k
tt hhE θθ�

−

=

Π+Π=Π=  and ')( 1
1101

'
1,

−
− Π−Π= TT

tt hhE θθθ . Given

01lim →<
∞→

θθ T

T

, we have 01
'

, )( Π≈−
m

mtt hhE θ . Consequently, if jλ  are complex so

too will )( '
, mtt hhE −  be.

The spectral representation of the variable yt  is �−
π

π
)(wdyeiwt , where, as standard, w is

frequency and 1−=i .  And its model-based spectral representation would be

( )
��
�

��
� +−= �� −−

− π

π

π

π
θθ )()(1 2

1
1 wdvewdxeLy iwtiwt

t . Thus, knowledge of the parameter

vectors, underlying shocks and the paths for the exogenous variables allows us to take
into account the cyclical aspects of the model and, in turn, build its spectral
representation. (See also Chow, 1975).
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The remaining issue is stationarity; spectral tools are stationary tools and should
invariably be applied to stationary, stable models.16 To continue, let us return to the
more general state-space formulation of equation (1), [ ] tttt zCxBxA ⋅+⋅=Ε⋅ +1 . This
generates ttt zAxAx 211 +=+  where CAABAA ⋅=⋅= −− 1

2
1

1 , 17. Here x, the state vector,

is assumed to contain the N endogenous variable types partitioned into N-L
predetermined variables and L lead variables. We know (Blanchard and Kahn, 1980)
that the solution will be stable and unique if A1 has

Lii ,...,1,1 =>λ and LNjj −=≤ ,...,1,1λ ; additionally A2 is assumed

Kkk ,...,1,1 =<λ . This ensures a stable, model solution but not necessarily a

stationary one (since there may be growth, trends and non-stationary variables such as
the capital stock, population growth etc). The alternatives thus are either to represent the
model in equilibrium deviation form or to filter the output of the (stochastically-
simulated) model to render it stationary. We prefer the latter since it ensures consistency
between the data used to draw the correlation matrix in section 5.2 and that used to
derive its spectral characteristics.

Typical applications of spectral methods to models include: model parameterisation
based on minimising some distance function (of model and data spectra),
supplementing model variability until the full stochastic moments and spectral
properties of the data are met. For a given covariance stationary univariate
series,{ ∈txt , ℝ}  with mean µ=)( txE  and auto-covariance function

( )( ) kkktt xxE γγµµ −==−− −  (given �
∞

=
∞<

0k
kγ ), the spectral density can be written

as: 

�
�
�

�
�
� += �

=

∧∧ m

k
jkkj kf

1
0 )cos(21)( ωγλγ

π
ω (4)

Where frequency [ ]mj
m

j
j ,0, ∈= πω , [ ]πω ,0∈j ,18 m is window size, and kλ  are lag

window (Bartlett) weights. In defining m, we consider two solutions: bandwidth
selection based on the Andrews (1991) procedure and a common default Tm 2= .19

                                                          
16 In the previous case, stability simply boiled down to whether the condition 11 <θ was met.
17 Rewriting in this way of course pre-supposes that the matrix A is invertible (e.g., see Klein, 2000).
18 Given symmetry w can be ],[ ππ−∈ or ],0[ π∈ , where small ω  relate to long-run relations and short-run
near π .
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Using the spectrum, we can judge how important cycles of different frequencies are in
accounting for the behaviour of a series, its periodicity and long-run variance. The

period (i.e., the length of a cycle) associated with each frequency is calculated as 
jω
π2

and overall periodicity by )(max2
j

j

f ω
ω
π . Furthermore, for long-run variance, we

know that the standardised spectrum 20 evaluated at zero frequency, ( )0f , provides a

consistent estimate of Cochrane�s (1988) measure of persistence (i.e., a measure of a
series� deviation from long-run trend). 21

6.2 Graphical Results

Table 3 and Figures 1 implement these techniques for historical and simulated data �
using Output, Consumption, Investment (all real) and Employment22. Looking at
historical data, we can see that all four series appear highly persistent and essentially
I(1). The point estimates of long-run variance are relatively high (although persistence
measures derived from such techniques tend to be in this range, e.g., Campbell and
Mankiw, 1987)23. Their periodicity�s range from between 4½-10 years (with
Investment having the longest-lived cycle) which seems reasonable for macro data
generally and in the euro-area case in particular (Stock and Watson, 1999, Orlandi and
Pichelmann, 2000)

[Table 3]

[Figures 1]

Looking at the historical spectral densities and their standard errors (Figures 1 � i.e.,
)(2)(

jfjf ωσω ± ), we see that all series display the typical Granger (1966) shape with

                                                                                                                                                                     
19 These might be considered opposite ends of the range � from variable-specific to sample-specific
bandwidth selection. See the discussion in Andrews and Monahan (1992).
20 Where standardisation is by 0/γπ .
21 Similarly, Campbell and Mankiw (1987) derive their persistence measure parametrically from the
spectral density evaluated at 0=ω using the polynomial estimates from an ARMA representation.
22 The same variables as in Watson (1993). As before (Tables 1 to 2), and as is necessary for spectral
analysis, we transform the variables into covariance stationary processes by taking the difference of the
log of the series and its HP filter: y � HP(y) .
23 See also Romer (2000, ch 4).
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high power at low frequencies and declining power thereafter.24 The same can largely
be said for the artificially generated data. We have the same familiar shape and, at
typical business cycle (4½-10 years) frequencies, the stochastically generated results
are largely contained within the standard errors of the historical data. Similarly, the
persistent estimates of the model are typically in the range of  +2 quarters of the data
and the estimates of long-run variance encompass one another well over both
bandwidth selection methods. Notably, the rate of decay of the model spectra appears
slower than that of the data.25 The notable exception is output: the model assigns a
larger periodicity than that found in the model. Since the major demand components
behave well in that respect, the culprit would appear to be either net trade modelling
or (exogenous) public consumption. On a broad perspective, therefore, the model
would appear to share similar spectral characteristics to the data; more similarities
than differences at least.

7. Measures of Predictive Accuracy.

The goal of this section is to check to which extent the model captures relevant
empirical regularities in the data, as was done in the last section, but following an
alternative approach. An assessment of its performance will be obtained by simulating
forecasts. The purpose is again broad enough to involve the model as a whole, i.e. not
to analyse specific parts of the model, but rather the system in its entirety. The
approach hinges on the idea that the economy is forecastable at least to some extent,
which seems reasonable, and that only models able to capture relevant regularities can
deliver above-average forecasting performance. Although backward-looking in
nature, the model purports to describe structural features of the euro area economy:
links between empirical regularities and structural priors are given by the data-based
estimation of the parameters in the model. Thus, the AWM can be loosely described
as a system whose links with the data are heavily constrained by theory. Whether this
system can approach the forecasting performance of systems tailored to the data, i.e.
avoiding these heavy prior constraints, is precisely the question at stake.

                                                          
24 Asymptotic standard errors are given by:
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25 This was also a finding of Diebold et al.�s (1998) cattle-cycle model.
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The approach taken is in spirit that of Stock and Watson (1999) and related literature,
although with some important qualifications in order to accommodate the more
complex structure of our forecasting model. In Stock and Watson's approach,
recursive forecasts are performed using versions of models re-estimated ignoring, to
the extent possible, information contained in the forecast period. Typical models in
this literature are random walks, auto-regressive (AR) processes, VARs and indicator-
or factor-based single equations etc. Although the AWM belongs to a class of
relatively small macro-models, it certainly does not belong into the class of models
mentioned previously. For instance, it is obviously impossible to drop a significant
number of observations without seriously affecting the quality of the estimates, which
means in turn that the number of simulated out-of-sample forecasts must be kept
relatively small. Conclusions from this exercise, thus, are inevitably subject to
important uncertainty. This factor has been countered in our approach by repeating the
same forecast exercises using all available information in order to assess the impact of
parameter re-estimation, i.e. performing in-sample dynamic simulations with the
model in settings similar to the previous ones. The in-sample exercises have been run
over the same period as the out-of-sample ones but also over a longer one, beyond
what is possible (or advisable) in an out-of-sample setting. Links between the two
exercises will be exploited in order to properly base our claim that the more extensive
in-sample exercises contain useful information related to the model's forecasting
performance, and not to possible data mining when the model was originally
estimated.

In accordance with the mentioned literature, forecasting ability will be measured in
terms of root mean square errors (RMSE) of the generated pseudo-forecasts. Another
important qualification needed in the case of a complex structural model is a deeper
analysis of how good a measure of forecasting ability are RMSE. This step can be
normally omitted in the case of simpler models with no explicit structural content.
When using a structural model, however, it turns out to be essential to gain an
understanding of what factors are affecting most the forecasting performance. A
simple decomposition of generated RMSE will be proposed with this in mind. The
decomposition will be of a non-structural nature, in order to establish a comparison
between the AWM and simpler benchmark models, but will be shown to have
implications for a deeper understanding of the structural properties of the model.

Last but not least, in building forecasts with the AWM, residual adjustment will
become an important element. In the exercises reported below, explicit use of add-
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factor approaches will be made, both in order to assess their importance in the model
forecasts and also in terms of looking for possible reasons why add-factors could
improve the outcome. Obviously, only simple residual-projection strategies will be
adopted. It should be stressed that the mechanical rules for "add-factoring" considered
here are stylised and bear little resemblance to the actual practices used in forecasting.
For example, the setting of add-factors in practice, is usually based on information
from off-model leading indicators and expert judgement. In addition, different
approaches for setting add factors are used in different equations depending on the
assessment of the nature of shocks hitting the economy.

7.1 Analysis of the RMSE of the forecasts

The framework

As said, simple residual-projection strategies will be adopted: from projections in
which residuals will be set to their in-sample average (normally around zero) to more
sophisticated rules. All these rules will be followed according to their expected impact
on the forecasts, and will be based on a prior view on what adverse factors can be
overcome by add-factoring. These views originate in a formal view of the forecasts
that needs being expounded. Let us thus assume that variables to be forecast are
stationary: a Wold decomposition for them can then be found, (5). In the expression,
variable xt is decomposed into a deterministic time-varying component µt and a
stationary moving-average of possibly infinite dimension of the process εt, itself
stationary and independently distributed. Expression (5) represents the true, data
generation process of the variable to forecast, and is thus unknowable. Forecasts will
be based on models that (hopefully!) approach the process (5) but will in general
differ in one aspect or another from (5). Expression (8) expresses the forecasting
models, again in the form of a Wold decomposition of the models.

( ) ( ) ∞<=∞<+⋅= �
∞

22 var,where, εσεθµεθ t
i

ittt Lx (5)

( ) ( ) ∞<=∞<+⋅= �
∞

22 var,where, ησηϕνηϕ t
i

ittt Lx (6)

Forecasts with the models are as in (7), in which h
tf  is a stochastic forecast obtained

from (8) h steps ahead. The error process in the forecast period is assumed to be given
by a deterministic rule (such as 0=h

tη ). Note that νt is made dependent on h to allow
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for model revisions between forecasts, but this is not per se a crucial element in the
analysis. It is important to stress that forecasts are stochastic because (8) is a
stochastic process, not because stochastic simulations will be run with the models: the
fact that residual projection is deterministic means that the forecasts will sooner or
later converge to a deterministic process with probability one.  (We expand upon this
later.)

{ } ( )[ ] [ ] ( ) h
t

h
tthththtt

h
t LxLxxxf νηϕσϕ η +⋅=Ε≡Ε≡ −−−− ,,,,| 1 �                                           (7)

One important aspect of the comparison between (5) and (8) is that they can be used

to formalise some potentially important sources of forecast failure. Namely, there

could be a false separation between deterministic and stochastic components of the

variable on the one hand ( tt νµ ≠ ), and a false description of the law of motion of the

variable on the other ( ( ) ( )LL ϕθ ≠ ). While the latter could lead to bad forecast

performance in short-horizon forecasts, the former could have a longer-lasting

influence. In what follows, strategies to project residuals will be explicitly linked to

the sources of forecast failure tackled in each case.

The first set of sources of forecast failure, i.e. those stemming from wrongly
modelling the deterministic component of the variable, are closely related to what in
the forecasting literature has been identified as deterministic shifts, see Hendry and
Clements (1998, 1999). As stated in Hendry and Clements (op.cit.), forecast failure
can arise because of many factors, some potentially important being:

i) In-sample model mis-specification or data-based model selection;

ii) Poor estimation strategies or incorrect calculation of confidence intervals;

iii) Parameters depending on policy-regime changes;

iv) Structural un-forecastable breaks.

Not much will be said on points i) and ii), as no specific alternatives to the AWM's
structure or used estimation techniques will be analysed. Point iii) will be tackled by
assessing the degree of parameter instability in the model by the simple expedient of
re-estimating the model with an artificially expanding sample. Point iv) will be
assessed by suitable alternative residual adjustment and projection methods, with the
goal in mind of replicating specific changes in µt by implicitly shifting νt. Our
understanding of point iv) is that it encompasses any change in the data-generating
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process (5) leading to a new distributional mean for xt. In terms of the AWM, this
means that the joint unconditional mean of the endogenous variables has to be
identified. Considering that the AWM is mainly composed of accounting identities
and stochastic equations expressed as equilibrium corrections mechanisms (EqCM), a
log-linear approximation of the model could be expressed by (8), in which yt is a set
of I(1) endogenous variables, zt a set of I(1) exogenous variables, dt a set of
deterministic variables and ut a stochastic residual.

( ) ( ) ( ) tttttt uzxzLBdyLA +−⋅−∆⋅+=∆⋅ −− 11 '' γβα                                                     (8)

In the framework set out in (5) and (8), forecasts would be made on a component of
∆yt, stationary by definition (i.e., xt in (5) and (8) corresponds to ∆yt in (8)). Our
definition of the deterministic part of xt in (8) will then be given by the corresponding
element of the unconditional expectation of ∆yt in (8), and the stochastic part by the
difference between expectation and actual, as in (9). In this expression, the
unconditional expectation Ε(∆yt) clearly results from solving the model as a
deterministic set of equations, i.e. ∆yt-Ε(∆yt) is different from ut in (8).26 (Compare
this with the expression for h

tf  in (7), an expectation made conditional on information

from the recent past.) In other words, the expectation in (9) is given by the model's
equilibrium condition for the levels of the variables and is thus a representation of the
long run of the model. In consequence, our understanding of what deterministic shifts
mean in the context of the forecasting model is: shifts to the steady-state conditions of
the AWM. It is now clear that residual projection is a natural way to implement
changes to these conditions, which is precisely what is attempted below. Note also
that models expressed in difference terms, i.e. models that do not determine the level
of the variable, will in general be in the short term more robust to deterministic shifts
than models with a steady state embedded in them.

( ) ( )[ ]

( ) ( ) ( ) ( ) ( )[ ]11
1 ''11

where

−−
− −Ε⋅−∆Ε⋅−⋅=∆Ε

∆Ε−∆+∆Ε=∆

ttttt

tttt

zxzBdAy

yyyy

γβα

                                             (9)

A RMSE Decomposition

                                                          
26 In other words, Ε(∆yt) ≡ Ε-∞(∆yt) will in general be different from Εt-h(∆yt).
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As said previously, the forecast variable xt will be assumed stationary and thus
decomposable along the Wold decomposition, as in (5). Furthermore, the models used
to forecast the variable all embody a (stationary) implicit distribution for the variable
summarised in (8), where again the Wold decomposition has been used. Assuming
that a h-step-ahead forecast h

tf  is generated using (7), the measures of accuracy of

forecast used in the preceding sections are given by (10), the MSE (Mean Square
Error). Reported RMSEs would simply be the square root of MSEs in (10). MSE is
not made dependent on t because of the distributional assumptions made, but it
depends on the forecasting horizon h.

( )2hMSE h
tt fx −Ε= (10)

The expression for MSE leads naturally to a decomposition of the statistic using the

Wold decomposition of actual and forecast. Taking into account that

( ) ( ) ( ) ( )[ ]22 h
tt

h
t

h
ttt

h
tt fxfx νµνµ −+−−−Ε=−Ε , ( ) 0=−Ε ttx µ  and ( ) 0=−Ε h

t
h

tf ν , it is

easy to show that expression (10) is equivalent to (11), which itself can be rewritten as

(12). This expression is interesting because it decomposes the MSE along components

about some of which we can a priori say something. Namely, the distributional

assumptions made means that the first element is given and outside the control of the

analyst. The only hope to reduce forecast error is by ensuring that: i) no bias is

introduced in the forecast and ii) covariance between actual values and forecasts is

such that their variances will be cancelled out.

( ) ( ) ( ) ( )[ ] ( )222h 2MSE h
tt

h
t

h
ttt

h
t

h
ttt fxfx νµνµνµ −+−⋅−Ε⋅−−Ε+−Ε= (11)

( ) ( ) ( ) 2h ,cov2varvarMSE biasfxfx h
tt

h
tt +⋅−+= (12)

Furthermore, if the forecast is deterministic (i.e., ( ) hTth
t −>∀= 0varη , where T is the

forecast origin), it is easy to prove that the variance of the forecast will shrink as the
forecast horizon is increased, as shown below.
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Hence, ( ) 0varlim =
→∞

h
th

f , which means that h
t

h
tf ν=plim . Obviously, the same

shrinkage phenomenon applies to the covariance between actual and forecast. This

means that in (12) all the elements except the first and last ones converge to zero as

the forecast horizon is increased. The obvious implication is that in long-horizon

forecasts avoiding biases is the only thing that matters. For empirically relevant

horizons, this conclusion does not necessarily hold, as in their case a large variance

for ηt may be the most important factor in looking for enhanced forecast accuracy. It

is interesting to find whether a sample counterpart to (12) can be found, in order to

assess the relative importance of all these factors. Unfortunately, this can be achieved

only at some cost.

The sample expression for the MSE is given by (14), where it is assumed that the first

forecast is done at time 0 and that the variable xt spans until period T and is assumed

to be present for at least h periods before time 0. A natural extension to express the

MSE decomposition as in (12) would be to replace variances and means in the

expression by their sample counterparts, as in (15). This expression, though, relies on

the assumption that both means and variances do not depend on t, contrary to the

rather eclectic underlying assumptions made in (13). We will nevertheless use (15) to

decompose shown MSEs, in the conviction that such decomposition can lead to

interesting insights. It is important to keep in mind, though, that conclusions reached

may be affected.
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7.2 A Description of the Exercise

The forecasts attempt to measure the 1- to h-step-ahead forecasting ability of the
model, where h is set to 8 in the simulated out-of-sample exercise and to 12 in the in-
sample exercise performed below. For the first exercise, the model is re-estimated
each time on a subset of the original sample, and the re-estimated model is used to
generate a forecast over the remaining part of the sample. Forecast errors are then
calculated based on observed data. Exogenous variables for the AWM must be
determined either using outside equations or taken from actual realisations. Although
the first approach seems worth exploring, the second one was taken in order to
simplify the analysis. As an informal benchmark, similar forecasts are run with simple
alternative models based on pure time-series analysis of the data. Forecast accuracy
will be analysed in terms of the first difference of the log of analysed variables. It is
important to stress that this is a very tough criterion, because a forecast h steps ahead
will imply that the rate of growth of the variable for a specific quarter will be forecast
h quarters in advance. Many studies present forecast accuracy in terms of the
difference between today's value and the value h quarters ahead of the level of the
variable, thus exploiting the averaging properties inherent in a stationary process. In
our approach, the forecaster has to face an h-step-ahead forecast without relying on
the average accuracy of his/her forecasts for the periods in between.

Forecasts with the AWM involve the model as a whole, which means that forecasts
for a large number of series are generated. Only three variables will be shown,
though: GDP growth, GDP deflator inflation and consumption deflator inflation.27

These three variables are a useful summary of model-based results, are relevant for
the analysis of the euro area as a whole and are known to be forecastable with simple
benchmark models alternative to the AWM. Furthermore, the three offer specific
                                                          
27 HICP has not been included due to the short sample available for the series in the data used, 1995
onwards. Linking HICP with national CPIs for previous periods is not an option in practice, due to
definitional changes and detected important shifts in seasonal behaviour between HICP and (aggregated)
CPIs.
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challenges in a forecasting exercise. As shown in Figure 2 (upper panel), GDP growth
(in the form of first difference of log of real GDP) shows a low degree of persistence
and a noticeable degree of variability. The lower panel of Figure 2 shows GDP
deflator inflation and consumption deflator inflation, again in the form of first
difference of log of each variable. Two outstanding facts in the figure regarding these
two series is their evident higher persistence, on the one hand, and the likely presence
of shifts in their underlying means, on the other. It could even be claimed that
inflation should be considered as an I(1) process, i.e. prices are I(2). This is not the
view taken here, in which inflation will be considered a stationary process.
Furthermore, although both variables broadly co-move, short but conspicuous
separations take place here and there, mostly at times when oil prices were suffering a
shock. All these factors, i.e. whether persistence, shifts in the underlying processes or
the impact of exogenous information matters for a forecast, will be at the core of the
following discussion.

Model re-estimation meant that making forecasts covering large spans of time could
lead to small-sample estimation biases in the initial forecasts � a cost to pay in any
out-of-sample exercise in which increasing parts of the observed sample are ignored.
Instead, it was deemed preferable to focus on a shorter period in which the likelihood
of structural breaks was probably high: 1996Q1 to 1999Q4. The period does not
include any important turning point, which was seen as suitable for the exercise at
hand for reasons that will be made clearer later. Each forecasts comprised two steps: a
re-estimation of the model using information until the period previous to the start of
the forecast; and a forecast covering as many periods as possible until 1999Q4. As
said, three variables were taken to assess the forecasting performance: GDP growth
and GDP deflator and consumption deflator inflation.28 The forecast accuracy was
measured by a number of standard statistics: the mean error of the forecast, its RMSE
and the corresponding Theil�s U and a non-parametric measure of the standard
deviation of the latter.29 Simple AR(2) models with the variables expressed in first
difference and a constant were used as alternative benchmarks.30 The use of the
RMSE measures in a period devoid of important turning points means that both the
no-change assumptions and the AR models used as benchmarks are at their best, due
to the well-known fact that these models are bad in detecting turning points. If
anything, thus, the chosen forecasting period should bias results against the AWM.

                                                          
28 Calculations shown later are actually for the first difference of the natural logarithm of these variables.
29 Theil�s U is the ratio between the RMSE of the model�s forecast and the RMSE corresponding to
forecasts in the assumption that the forecasted variable kept its last-observed value forever.
30 Exercises were performed with one to four lags in the auto-regression without affecting conclusions.
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The steps taken for the out-of-sample exercise were the following. For each model, a
forecast was run starting in 1996Q1 with models (i.e., the AWM or the benchmark
models) estimated using data until 1995Q4. Forecasts were run for the following eight
quarters ahead and the corresponding forecast errors were collected. Thus, this
forecast in particular generated one instance of 1-step-ahead to 8-step-ahead forecast
errors. The models were then re-estimated using sample until 1996Q1 and a new
forecast starting in 1996Q2 was run for eight quarters, from which a new instance of
1-step-ahead to 8-step-ahead forecast errors were collected. The exercise was repeated
for each quarter between 1996Q1 to 1999Q3, although not all forecasts can be made
for eight quarters ahead: forecasts made after 1998Q2 are run for the maximum
number of periods ahead that actual observations allow, i.e. until 1999Q4. After the
exercises were run, errors were collected according to the number of periods ahead to
which they correspond. The final number of 1-step-ahead errors was thus 16, while
the total number of 8-step-ahead errors was 9. For each of the 8 generated series of
forecast errors the average mean and the average RMSE were calculated and are
reported in the tables described below.

The steps taken for the in-sample exercises were similar, with the exception that the
re-estimation step was skipped: the AWM was used in its standard specification and
the benchmark models were used as estimated with their full sample. Rolling forecasts
were started in 1990Q1 and were performed, as before, until 1999Q4. Taking
advantage of the higher number of forecasts done, the longer forecast horizon was
increased to 12 steps ahead, i.e. projections were run for 1- to 12-steps-ahead
forecasts, generating from 40 1-step-ahead forecasts to 29 12-step-ahead forecasts.

Treatment of additional exogenous information

Important exogenous variables that could affect the outcome comprise foreign
variables (output, output prices and oil and commodity prices) and fiscal variables. As
a first approximation, these were simply taken as actually observed. Another set of
series that are nominally endogenous but whose equations were dropped were the
exchange rate and the interest rate. The two equations describing the law of motion
for these two variables were calibrated from well-known theoretical constructs, i.e.
the UIP condition and a standard Taylor rule, and are invariably not seen as
appropriate for a forecasting exercise. Put simply, there is no warranty that these rules
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are a reflection of relevant structural features in the data. These two variables were
thus also kept at observed values.31

As already explained, important exogenous variables were kept at their observed
values, i.e. for each forecast they belonged to yet unobserved periods and thus the
procedure was in disagreement with the rules set for the exercise. In order to establish
a fair comparison, the benchmark AR models used in the RMSE comparison were
expanded to include external variables as exogenous factors, which were then also
taken from actual observations.32

Treatment of residuals

Among exogenous information needed by the model, one received a considerable
amount of attention: the residuals of the estimated equations. As already stated, one of
the crucial aspects of the exercise is to disentangle potential parameter instability from
the presence of unaccounted-for structural breaks in assessing forecast failure. As
already said, Hendry and Clements (1999) claim that �deterministic shifts� account
for most systematic forecast failures, which they describe as un-forecastable breaks in
equilibrium means. These breaks lead to large and persistent errors in forecasting
precisely because they last for a long period, possibly forever. Regarding this
description, the fact that all the estimated equations in the AWM include a long-run
component in the form of an equilibrium-correction mechanism has to be stressed. All
the equations have implicitly or explicitly an equilibrium mean embedded in them,
and thus an intercept correction of these equations that is not subsequently reversed
can be understood as reflecting a deterministic shift of this kind. Thus, how residuals
are treated in these experiments is clearly a crucial part of the exercise.

One way to assess the importance of this factor in the AWM is by testing different
residual-projection approaches and assessing their impact on forecast performance. In
practice, what is done is projecting the residual of each equation using information
available at the time of the forecast and a number of simple projection strategies.
(Note that only stochastic equations in the model are shocked, identities are

                                                          
31 Note that this applies only to this part of the exercise, in which steady-state relationships are more the
focus of attention. In the previous exercise the model needed to be treated as a whole system, which
meant that closure rules for the exchange rate and the interest rate were needed. Shifts in the terminal
values of either variable could be later washed away with the business-cycle frequency filters used. These
terminal conditions, on the other hand, heavily affected the forecasts in this section.
32 Changes in fiscal ratios over the period were very likely too small to affect results, and were not
included in the AR models.
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unaffected by the procedure.) A typical stochastic equation in the model can be
described as:

( ) ( ) ( ) tttttt uzyzLbyLacy +−−∆⋅+∆⋅+=∆ −−− 111 'γβ ,

where yt  is the variable set by the equation and zt the determinants of yt  (themselves
maybe endogenous), c is a constant and ut is the residual to be projected. For the
initial in-sample exercise, which was of an experimental nature, four simple
extrapolation strategies were adopted:

1. Flat Projection Method: for each forecast, residuals were projected according
to their mean over a long period of time (1985Q1 to the period previous to the
start of the forecast in the out-of-sample exercise, same starting date to
1999Q4 in the in-sample exercise):
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This method was used in two different forms. In the out-of-sample exercise,
the residual was projected as its mean over the periods preceding the forecast.
Thus, it was projected as a constant that varied slightly for each forecast,
according to its initial date. In practice, residuals were not very different across
forecasts, as model re-estimation did not lead to large variations in parameter
values. In the in-sample exercise, instead the value was kept fixed across
replications. Although it would seem that taking averages for the period 1985
to 1999 would imply that future information was taken on board this is not
actually the case, as changing the period over which the average is calculated
did not lead to noticeably different residuals nor, accordingly, results.
Actually, most of the residuals' average for the period were very close to zero.

2. Smoothed-Outlier Projection Method: for each forecast, residuals were
projected at the average value observed in the last four quarters before the start
of the forecast:
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The method tries to strike a balance between considering that all residuals are
shifts in the deterministic part of the forecast and acknowledging that true
outliers might be present. The way to do that is by taking a moving four-
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quarter average of past residuals and assuming that the resulting average is the
new terminal level for the variable.

3. Outlier Projection Method: for each forecast, residuals were at their last-
observed value, i.e. the period preceding the first forecast period:

kTkuu tkt −==+ ,...,1,

This method is similar to the previous one, except for the extreme assumption
that last period's equation residuals are always signalling the onset of a
deterministic shift.

4. Smoothed-Trend Projection Method: for each forecast, residuals were
projected according to their last-observed trend, defined as the average change
over the four periods preceding the forecast.
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This method is even more extreme than previous ones since the trend in the
deterministic component of each forecast is revised each time an exercise is
run. In practice, this approach implies that the model is not trusted at all.

For the 3rd and 4th methods, which gave the highest variability of residuals, a small
smoothing mechanism had to be put in place in order to avoid large deviations in the
forecasts. In the large number of exercises performed � some not reported in the text �
it was found that some exceptionally large residuals led to implausibly large forecast
errors, or outright simulation debacles. In order to ease this, residuals going above 5
times their historical � at the time of the forecast � variance were reset to their past
mean. This solved the previous problem without critically altering results.33

As already announced, more sophisticated projection methods can be used: those
selected above are probably too naïve to be realistic. A couple of alternative strategies

                                                          
33 It was ascertained that, whenever the no-smoothing rule did not lead to large mis-forecasts, results with
the rule or without it did not change conclusions. The rule only struck for investment in 1996Q2 and for
wages in 1998Q1 in both methods.
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were selected (loosely) based on the form of the equations in the AWM, most of
which are dynamic equations with a co-integration vector in a so-called equilibrium-
correction mechanism (EqCM), of the form defined above. Dropping the dynamic part
of a typical EqCM equation results in,

( ) tttt uzyy −−−=∆ −− 11 'γβ ,

Following Siviero et al. (2001), in this expression last period's residual u0 could be a
true one-off outlier to be corrected afterwards or it could be signalling that a true
permanent shift has taken place. In turn, any of these hypotheses could lead to a
gradual or immediate impact on the variable. Some of these hypotheses need a
specific residual-projection assumption, as expressed in the schematic representation
below. These approaches were tested for the in-sample exercise, results for the first
two ones being reported.34

Type of Outlier Residual
Projection

Impact on yt Impact on ∆yt

Corrected Level Shift -βu0, -βu0, -βu0,� u0, u0, u0, � u0, 0, 0, �

Corrected Outlier -(1-β)u0, 0, 0, � u0, 0, 0, � u0, -u0, 0, 0, �

Compensation of Outlier -βu0, (1-β)βu0, 0,� u0, -u0, 0, 0, � u0, -2u0, u0, 0, �

Re-estimation procedure

Re-estimating the model was a crucial step since in doing so it was important to use as
little information as possible belonging to the period to be forecast. This was achieved
by, among other things, restricting the number of parameters originally calibrated, as
the calibration could be seen as reflecting prior information based on the knowledge
of the full sample. Among parameters that were nevertheless taken at their original
calibrated value, the capital-share parameter β was the most important. This parameter
is calibrated based on the mean value of the wage-income share in GDP, which has
varied somewhat over the last 20-30 years. Other calibrated parameters taken
unchanged were parameters in the wage and price equations on price expectations and
                                                          
34 Note that what Siviero (2001) call Error in Equilibrium and Gradual Vanishing correspond to our
smooth-outlier and the flat projection methods described above. Results for two strategies are only
reported due to lack of space.
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the ECM term in the wage equation. In addition, the NAIRU embodied in the model
was left unchanged at its full-sample values. It is unlikely that this may have
significantly affected the outcome of the exercise, due to the small scope for change in
these parameters or variables in the relatively short period over which the forecasts
were run. Finally, the VAR was also estimated and decomposed in a recursive way.

The equations were simplified by dropping dummy variables effective in or after
1995Q4, the first period estimated.35 Another simplification was the harmonisation of
the end-of-sample for all the equations. Although original equations were estimated
with varying ending points, depending on data availability at the time of original
estimation, in the present recursive exercises all equations were estimated until a
common ending point, the last possible period before starting each forecast.
Notwithstanding all these points, the equations were remarkably similar to those
reported in Fagan et al. (2001), and relatively stable over the 4-year period used.
Results for the estimations are reported in Annex 1.

For the in-sample exercises, the model was used as taken.

Alternative benchmark models

The AWM was tested against simpler alternative models: an AR(2) model of each
variable, and an AR(2) augmented with exogenous information (foreign GDP and
prices, exchange rate and interest rate) taken at their observed values. Both
benchmark models were for the first difference of the log of the variable to forecast,
and included a constant and two lags of the endogenous variable. The second also
included the short-term interest rate (in levels) and the first difference of the exchange
rate, foreign GDP, GDP deflator and oil and commodity prices. These variables
entered contemporaneously and lagged once and twice respectively.

7.3 Results

A preliminary look: GDP deflator inflation

Table 4 shows the basic forecast statistics for the out-of-sample exercise GDP deflator
quarter-on-quarter inflation. Although also GDP growth and consumption deflator

                                                          
35 An alternative is to alter the specification of the equations to re-introduce dummy variables after the
period in which they become effective. The decision to keep equations unchanged over recursive re-
estimations was taken to simplify the exercise. This means that outliers in the period are more disruptive
than otherwise, thus possibly again biasing results against the AWM.
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inflation will be analysed, it is better if some preliminary discussion of results is done
based on a subset of the information. This is convenient since we will take advantage
of the ensuing discussion to advocate, precisely, that not all generated information is
relevant. What Table 4 shows is the mean error, RMSE and Theil's U statistic
(together with its standard deviation) for exercises covering from 1- to 8-step ahead
forecasts, run for the period 1996Q1 to 1999Q4. Models for which results are reported
are the AR(2) model, the AR(2)-cum- exogenous-information model and the AWM.

[Table 4]

Results for the AWM are shown for the announced residual-projection strategies: no
residual projection, residuals as smooth level shifts, residuals as non-smoothed level
shifts and residuals as smooth trend shifts. Please note that Theil's U statistic is simply
the ratio between the corresponding RMSE and the RMSE resulting from a naïve
forecast in which the GDP deflator inflation is projected unchanged since it was last
observed. The standard deviation attached to each U statistic is the non-parametric
estimate of the ratio of the two RMSE involved in its calculation. Thus, an U statistic
of less than one indicates that forecasts from the model under test is to be preferred to
the naïve forecast.

A number of facts can be noticed:

- All the models behave similarly for short horizons (h less than 3 or 4), after
which all models worsen substantially, in particular the AR(2).

- In terms of Theil's U statistic, the smooth-residual projection is clearly to be
preferred to the no-residual strategy, and these two are much better than the
other two residual-projection strategies.

- In terms of mean error (bias), the smooth level-shift projection strategy is by
far the better. Actually, the AWM beats on this account any other model in the
table.

It is worth pointing out to what extent these results apply to the other two variables
analysed, GDP growth and consumption deflator inflation. GDP growth is clearly less
persistent than inflation and thus less easily forecast, which leads to relatively worse
behaviour across models than is the case for GDP deflator inflation. Consumption
deflator inflation is forecast with accuracy similar to that of GDP deflator inflation,
but the ranking of the models differs slightly. For shorter-term forecasts, i.e. those
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under 4 quarters ahead, the AR(2) and the AWM with no residual projection are
better, but at longer horizons the AR(2)-cum-exogenous-information is best.
Nevertheless, some of the resulting Theil's U's showed a great variability, underlining
the uncertainty of these results due to the relatively small number of forecasts run.
The finding that shows higher robustness, on the other hand, is the good performance
of the AWM with smooth level shifts regarding forecast biases: this feature is present
everywhere.

In summary, one could argue that the AWM, although no worse than standard
forecasting benchmark models, needs some help from exogenous level shifts. In this
respect, results from the exercise do not invalidate � far from it � results reported in
Clements and Hendry (1999). The implications of this are that the model is not
properly capturing stable long-run relationships, in line with the previous author's
argument, but that dynamics in the data are (broadly) correctly portrayed. This line of
reasoning is based on a casual look at mean forecast errors and RMSE of forecasts. As
will be shown, though, a deeper analysis of the RMSE leads to partial reassessment of
this conclusion. We will proceed to decompose the reported RMSE in order to show
that although level shifts are important to counter model biases, their overall impact
on forecast accuracy could be negative. Although deterministic shifts help reducing
first-moment discrepancies between model and the data-generation process (and this
seems to be a robust finding), this happens at a cost in terms of second-order moments
than at times more than balances their potential benefit.

Table 5 shows the RMSE decomposition of the forecasts for the four models analysed
in Table 4. In the table, the decomposition in (12) is shown relative to the variance of
the variable, in order to enhance the readability of the table.36

[Table 5]

One striking feature in the table is the huge discrepancy between relative variance of
the forecast and relative bias squared between the AWM with smooth level shifts and
the rest of the models. The former has a very low contribution to MSE from bias,

                                                          
36 In other words, the raw numbers � which were very small � have been re-scaled by the variance of the
observations used to calculate the corresponding RMSE. Please note that the column with the relative
covariance, label 'cov(x,f)/var(x)', differs by construction from the correlation between actual and
forecast.
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clearly inferior to the rest of models shown. (The AR(2)-cum-exogenous-information
model is clearly worse on this account, though, which explains its very bad behaviour
at medium to long horizons.) On the other hand, the variance of the forecast is much
higher for the AWM with smooth level shifts. Finally, the relatively good
performance of the AR(2) at short horizons (less than 2 quarters ahead) is coming
mostly from its low variance of the forecast. This low forecast variance means that
AR(2)-based forecasts converge to a point faster than the other models, a feature
which is not desirable per se.37

In a word, level shifts are adding to the AWM's forecast variance but this is balanced
by a reduction in the forecast bias. Thus, level shifts seem to be positive to the extent
that they get rid of bias faster than they add to forecast variability, increasing the
probability of forecast debacles. Unfortunately, no firm conclusions can be drawn
from the exercise due to the small number of forecasts run, as is made clear by the
large standard deviations of the U statistics. Furthermore, forecast variance depends to
an unknown extent on parameter re-estimation, with more complex models bound to
lose more on this account due to higher number of parameters. In a word, results in
Table 5 may bias the picture against the AWM (or indeed any structural macro-
model) simply because of its higher complexity. It is thus necessary to reassess results
in the light of constant-parameter models.

Table 6 presents results for a repetition of the exercise described in Table 4, but
skipping the re-estimation step for all the models and with an extended period over
which the exercise is run, i.e. 1990Q1 to 1999Q4. Table 7 presents the corresponding
RMSE decomposition.

[Table 6]

[Table 7]

Results spanning 1996Q1 to 1999Q4, as in tables 5 and 6, were also assessed and lent
weight to the view that model re-estimation adds significantly to the variance of the
forecast without affecting much the bias. Hence, model re-estimation has in general a
small beneficial impact on forecast bias, but adds to forecast variability to an extent

                                                          
37 A model may converge to a given point because actual data behaves in this manner, or simply because
the dynamics of the model are mis-specified.
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that often more than balances this factor. Testing macro-models using full re-
estimation does not seem, accordingly, to be good practice.

Results in Table 6 have been drawn from simulated in-sample forecasts (i.e., dynamic
simulations) spanning the period 1990Q1 to 1999Q4, as mentioned, which means that
as much as 40 forecasts were available. This has the merit of significantly reduce the
variability seen in the numbers in tables 5 and 6 and considerably clarify the picture.
Taking advantage of that, forecast horizon has been increased to allow for forecasts
up to 12 periods ahead.

One of the main conclusions from tables 7 and 8 is that the AWM with no residual
projection is now clearly better than projecting with the smooth level shift projection.
As can be seen in Table 7, this stems basically from a lower variance of the forecast in
the latter case. Thus, although it is still the case that shifting the levels of the residuals
leads to lower forecast bias, this is more than offset by forecast variability induced by
shifting the levels. (In both cases the correlation between actual and forecasts is
similar.) Comparing to the benchmark models, Table 6 shows that the AR(2)-cum-
exogenous-information model now performs adequately, but with the caveat that this
seems to come mostly from much lower bias. The AR(2) model performs relatively
worse than previously, at least in comparison with the no-residual projection, in
particular due to very high bias at horizons longer than 7/8 quarters.

Results for all the variables

Finally, tables 9 and 10 present results for the other two variables of interest: GDP
growth and consumption deflator inflation. As said previously, GDP growth shows a
relatively small degree of persistence, which means that the forecasting performance
of all models is worse than for the inflation measures, see Table 8.

[Table 8]

 The tables clearly indicate that the AWM with no residual-projection strategy fares
better than when residuals are projected with smooth level shifts. Compared to
benchmark models, the AWM (with no residual projection) fares very similarly to the
AR(2) model, but somewhat worse than the AR(2) with exogenous variables. It turns
out that the AR(2) cum exogenous variables produces forecasts that show a slightly
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higher correlation to actual GDP growth than the AWM. This relatively higher
correlation seems to rest on foreign GDP growth and foreign GDP deflator inflation,
oil prices and the exchange rate adding little to it.38

Finally, Table 9 shows results for consumption deflator inflation.

[Table 9]

For this variable, it is again the case that the AWM without residual projection fares
better than the smooth-level-shift approach. In addition, this version of the AWM
convincingly beats the AR(2) model but fares slightly worse than the AR(2) with
exogenous information for horizons beyond 7/8 quarters ahead. This is explained
basically by the lower variance of the forecast generated with the former at longer
horizons, due probably to the faster rate of convergence of the AR(2) model to its
implicit steady state compared to the AWM.

Last but not least, none of the other residual-projection strategies tested in the context
of this exercise (i.e., the corrected-level-shift, the corrected-outlier and the
compensation-of-outlier approaches � the last one not shown to save space) led to
better results than the simpler approach.

7.4 Dos and Don�ts in Model Forecasting

Let us briefly summarise this exercise. First and foremost, add-factor adjustment in
macro-models may lead to less biased forecasts, but at a cost in terms of increased
variance of the forecasts (i.e., higher likelihood of forecasting debacles). They should
thus be used only with care. Residual adjustment is obviously a useful device when
dealing with information missing in the model, but adjustment not based on rigorous
economic thinking should be avoided. Other source of increased forecast inaccuracy
is parameter changes, which points to the possibility that model re-estimation should
only be attempted when evidence of mis-specification is sufficiently strong. In
particular, macro models should be left unchanged if re-estimating them would lead to
barely changed model parameters. Another interesting conclusion is that basing an

                                                          
38 Dropping oil and commodity prices from the AR(2) model with exogenous information led to basically
the same correlation, while dropping any of the other two variables � world GDP growth and world GDP
deflator inflation � led to a much lower correlation.
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analysis of macro models in simulated out-of-sample exercises if far from being wise.
On the contrary, the loss of efficiency resulting from ignoring true sample information
is of such a scale to distort conclusions. Very seemingly, out-of-sample analysis
should be attempted only with care for macro models and samples of standard size.

8. Conclusions.

In this paper, we presented a testing framework on a macro-model of the euro area. It
was not our primary purpose to draw specific conclusions about the AWM�s failings
or successes; indeed any such model is in an almost continual testing phase �
reflecting the different uses and questions to which it is addressed as well as the
environments and audiences to which it is exposed. While our work may provide
important feedback in that respect, our interests were more general. Our analysis was
launched in two directions. The first in terms of replicating high-frequency, business-
cycle characteristics; the second at examining out-of-sample recursive forecast failure.

First, the business-cycle tests. Matching models to business-cycle properties is most
readily associated with the DSGE programme. Our interpretation, however, differs in
a number of respects. First, our model is larger than standard DSGE ones. Thus,
instead of seeking to match a subset of empirical macro regularities, we take the
model seriously in matching them all. Second, the model�s estimation is given. Thus,
we do not parameterise based on moments� matching. Third, rather than relying on
highly-stylised replication procedures � such as AR (1) technology, monetary shocks
etc � we employ a system-wide Cholesky covariance decomposition. This means we
can be agnostic about the nature of historical shocks but still capture their moments.
Once done, bootstrapping the repeated stochastic simulations allows a probabilistic
formalisation of the match.

Overall, the model�s moments-matching might be described as reasonably �good� �
defined by the high number of insignificantly different cross-correlations. The model
matches volatilities less well. We speculatively ascribed this missing variability to
such things as the non-modelling of key foreign variables, lack of smoothing in the
monetary policy rule, incorporating shocks from purely behavioural equations etc.
Future work will seek to confirm that. Spectral properties are similarly encouraging;
all (data and model) series considered share similar qualitative characteristics and the
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model data appeared to be encompassed by the confidence intervals of the historical
data.

Our second set of tests reflected the concern that stylised fact tests could only take us
so far in system evaluation. After all, a model estimated from the data should match
many empirical regularities. Indeed, one can think of many classes of models that
might replicate business-cycle features. However, such models may have no sensible
structure, no steady state. Thus, we moved to tests that combined low-frequency
aspects (short-horizon forecasts) with long-run features (e.g., the existence and
identification of steady-states). Such concerns led us to consider forecast
performance. Aspects of forecast failure identified in the academic literature (but
typically employed with �small� systems) were applied. A number of tests were
carried out trying to assess the relative predictive performance of the model, taking as
benchmarks both simple time-series models and versions of the AWM where its
residuals were projected according to well-specified, simple laws of motion. The first
set of models are widely found in the literature and are useful in setting a well-known
benchmark. The second set of benchmark models were close alternatives to the AWM
with a focus on analysing the effects of the steady state in the model in terms of
forecasting performance. The outcome of the exercise has been interesting in that: i)
forecast accuracy in the model for inflation is visibly higher than for growth, up to the
point of approaching the accuracy of widely used time-series models; and ii) in the
tests, simple residual projection approaches are to be preferred to more complex ones.
One result that would need a deeper analysis and further testing would be a more
definite ranking of residual projection strategies, in particular whether taking into
account in one or another way past forecast failures improves the accuracy of the
forecasts or are better ignored. Moreover, given the stylised nature of the exercise, it
is difficult to draw definitive conclusions. This would require an assessment of the
contribution of actual judgmental adjustments made by forecasters to forecast
performance, along the lines of McNess (1990).
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Table 1: Euro-Area Stylised Facts: Historical Data

ST.DEV ST.DEV
Ratio AR(1) t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4

Real GDP 1.027 1.000 0.834 0.137 0.365 0.623 0.839 1.000 0.839 0.623 0.365 0.137

Consumption 0.897 0.873 0.751 0.238 0.388 0.521 0.646 0.718 0.518 0.376 0.217 0.088

Investment 2.721 2.649 0.883 0.234 0.405 0.583 0.741 0.866 0.795 0.675 0.507 0.331

Exports 2.509 2.442 0.756 0.167 0.318 0.503 0.64 0.743 0.605 0.401 0.202 -0.003

Imports 2.989 2.910 0.827 0.172 0.387 0.606 0.797 0.916 0.787 0.569 0.326 0.081

Nominal Exchange
Rate 4.027 3.920 0.824 0.013 -0.032 -0.086 -0.172 -0.257 -0.327 -0.371 -0.332 -0.248

Real Exchange Rate 4.073 3.965 0.818 -0.09 -0.037 0.035 0.142 0.248 0.328 0.37 0.318 0.215

Inflation:Consumption
Deflator 1.11 1.081 0.908 -0.55 -0.439 -0.247 -0.002 0.257 0.477 0.601 0.637 0.585

Price Level 1.196 1.164 0.955 -0.669 -0.713 -0.680 -0.591 -0.453 -0.279 -0.119 0.011 0.109

Unit Labour Costs 0.014 0.014 0.900 -0.589 -0.676 -0.725 -0.696 -0.605 -0.365 -0.121 0.117 0.288

Mark-up 0.862 0.839 0.794 -0.285 -0.389 -0.505 -0.554 -0.548 -0.319 -0.078 0.184 0.38

Nominal Wages 1.074 1.045 0.866 -0.635 -0.644 -0.586 -0.462 -0.265 -0.138 -0.009 0.12 0.205

Real (Producer)
Wages 0.664 0.646 0.678 -0.132 -0.100 -0.039 0.046 0.195 0.165 0.159 0.198 0.223

Real Consumer Wages 0.834 0.811 0.737 0.167 0.190 0.207 0.245 0.321 0.235 0.171 0.151 0.123

Labour Productivity 0.719 0.700 0.705 0.228 0.379 0.563 0.69 0.799 0.512 0.226 -0.051 -0.26

Employment 0.621 0.604 0.928 -0.018 0.173 0.375 0.577 0.72 0.787 0.765 0.659 0.503

Unemployment 0.344 0.335 0.913 -0.094 -0.234 -0.398 -0.585 -0.734 -0.799 -0.76 -0.645 -0.471

Nominal Short Interest
Rate 2.932 2.854 0.965 -0.567 -0.527 -0.434 -0.305 -0.175 -0.061 0.02 0.066 0.084

Nominal Long
Interest Rate 2.394 2.330 0.983 -0.432 -0.424 -0.382 -0.316 -0.244 -0.181 -0.13 -0.098 -0.073

Real Short-Term
Interest Rates 2.952 2.873 0.965 -0.564 -0.522 -0.425 -0.292 -0.156 -0.037 0.048 0.099 0.119

Nominal Money 0.393 0.383 0.827 -0.019 0.039 0.038 0.075 0.066 0.117 0.152 0.151 0.087

Real Money 0.817 0.796 0.909 0.531 0.533 0.487 0.403 0.302 0.23 0.136 0.047 -0.057

Real Gov.
Consumption 0.59 0.574 0.637 -0.136 -0.155 -0.110 -0.05 0.019 0.037 0.066 0.194 0.282

Notes:
Sample for all series is 1970Q1 to 1999Q4 except for Nominal and Real Money Balances: 1980Q1 to 1999Q4. For
Tables 1 to 2, we first log each series, then use the difference between the logged series and its HP filter to derive the
associated moments and cross-correlations,

y - HP(y)

The exceptions to this are the interest rate series and unemployment for which we use levels. Finally, all interest rate
series are shown as correlated with unfiltered GDP growth.
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Table 2: Euro-Area Stylised Facts: Simulated Data

ST.DEV ST. DEV
Ratio AR(1) t-4 t-3 t-2 t-1 t t+1 t+2 t+3 t+4

Real GDP 0.8602
[0.07] 1 0.7139

[0.01]
0.1474
[0.45]

0.2798
[0.27]

0.4811
[0.06]

0.7141
[0.00]

1
[1.00]

0.7141
[0.00]

0.4811
[0.06]

0.2798
[0.27]

0.1474
[0.45]

Consumption 0.8471
[0.31] 0.9859 0.7525

[0.56]
0.1279
[0.23]

0.2552
[0.15]

0.4428
[0.28]

0.6655
[0.63]

0.938
[0.01]

0.7287
[0.00]

0.5351
[0.12]

0.3455
[0.2]

0.2136
[0.07]

Investment 2.3595
[0.09] 2.7608 0.7458

[0.00]
0.2567
[0.52]

0.3346
[0.48]

0.4514
[0.5]

0.5719
[0.05]

0.7132
[0.45]

0.4815
[0.47]

0.2814
[0.48]

0.1206
[0.52]

0.0092
[0.52]

Exports 1.7464
[0.00] 2.0485 0.638

[0.03]
0.1515

[0.057]
0.2293
[0.28]

0.3504
[0.13]

0.4844
[0.05]

0.6509
[0.15]

0.38
[0.02]

0.2083
[0.09]

0.0595
[0.23]

0.0012
[0.42]

Imports 1.9113
[0.00] 2.2451 0.7091

[0.00]
0.2261

[0.4]
0.2914
[0.27]

0.3844
[0.07]

0.4801
[0.00]

0.5956
[0.00]

0.3778
[0.00]

0.2135
[0.00]

0.0638
[0.04]

-0.0124
[0.29]

Nominal
Exchange Rate

1.3735
[0.00] 1.6023 0.7879

[0.68]
-0.2933

[0.02]
-0.3812

[0.00]
-0.5129

[0.00]
-0.6554

[0.00]
-0.8205

[0.00]
-0.5586

[0.00]
-0.3248

[0.41]
-0.1377

[0.07]
-0.0028

[0.04]

Real Exchange
Rate

1.294
[0.00] 1.5102 0.7262

[0.05]
0.2328
[0.00]

0.3274
[0.00]

0.4758
[0.00]

0.6451
[0.00]

0.8662
[0.00]

0.6059
[0.00]

0.3688
[0.51]

0.1619
[0.08]

0.0128
[0.05]

Inflation:Consump
tion Deflator

0.4571
[0.00] 0.5374 0.841

[0.00]
-0.1813

[0.00]
-0.1653

[0.04]
-0.1435

[0.26]
-0.1114

[0.28]
-0.021
[0.04]

0.1012
[0.02]

0.2117
[0.00]

0.2833
[0.00]

0.282
[0.00]

Price Level 0.4825
[0.00] 0.5665 0.9134

[0.06]
-0.296
[0.02]

-0.3342
[0.00]

-0.363
[0.03]

-0.3758
[0.125]

-0.3248
[0.25]

-0.2382
[0.44]

-0.153
[0.4]

-0.0916
[0.31]

-0.0377
[0.25]

Unit Labour Costs 0.0078
[0.00] 0.009 0.8131

[0.06]
-0.4104

[0.13]
-0.4585

[0.29]
-0.525

[0.2]
-0.5763

[0.14]
-0.6112

[0.46]
-0.2842

[0.32]
-0.0775

[0.41]
0.0897
[0.45]

0.1473
[0.19]

Mark-up 0.6405
[0.00] 0.7465 0.6555

[0.2]
-0.3342

[0.34]
-0.3954

[0.48]
-0.4928

[0.55]
-0.5928

[0.3]
-0.7306

[0.02]
-0.3748

[0.7]
-0.1479

[0.3]
0.0715
[0.22]

0.1556
[0.00]

Nominal Wages 0.6045
[0.00] 0.7102 0.8105

[0.19]
-0.1554

[0.00]
-0.1277

[0.00]
-0.0565

[0.00]
0.0331
[0.00]

0.1668
[0.01]

0.0119
[0.27]

-0.0681
[0.43]

-0.1
[0.125]

-0.1432
[0.03]

Real (Producer)
Wages

0.4544
[0.00] 0.5334 0.6418

[0.37]
0.02

[0.23]
0.0477
[0.22]

0.1101
[0.24]

0.1666
[0.24]

0.1994
[0.46]

-0.0393
[0.13]

-0.1662
[0.01]

-0.1779
[0.01]

-0.2154
[0.00]

Labour
Productivity

0.7052
[0.39] 0.8219 0.6189

[0.13]
0.3201

[0.3]
0.3941
[0.46]

0.5219
[0.41]

0.6468
[0.23]

0.7911
[0.47]

0.3173
[0.00]

0.0312
[0.00]

-0.1765
[0.05]

-0.279
[0.46]

Employment 0.5298
[0.47] 0.6125 0.924

[0.49]
-0.178
[0.09]

-0.0672
[0.00]

0.0855
[0.00]

0.2953
[0.00]

0.5653
[0.00]

0.746
[0.16]

0.7558
[0.48]

0.7051
[0.7]

0.6257
[0.86]

Unemployment 0.4809
[0.05] 0.556 0.9239

[0.22]
0.178

[0.00]
0.0674
[0.00]

-0.0853
[0.00]

-0.2953
[0.00]

-0.5653
[0.00]

-0.7461
[0.125]

-0.7558
[0.53]

-0.705
[0.21]

-0.6255
[0.057]

Nominal Short
Interest Rate

2.1591
[0.05] 2.5364 0.7744

[0.00]
-0.4102
[0.096]

-0.3534
[0.067]

-0.2549
[0.06]

-0.1292
[0.058]

0.021
[0.08]

0.0682
[0.18]

0.0929
[0.33]

0.1011
[0.38]

0.1265
[0.37]

Nominal Long
Interest Rate

2.0567
[0.24] 2.414 0.944

[0.02]
-0.4232

[0.48]
-0.407
[0.52]

-0.3483
[0.44]

-0.2505
[0.43]

-0.1169
[0.17]

-0.0166
[0.12]

0.0564
[0.077]

0.1033
[0.00]

0.1429
[0.07]

Real Short-Term
Interest Rates

2.1468
[0.05] 2.5217 0.7708

[0.00]
-0.4122

[0.96]
-0.3541

[0.67]
-0.2552

[0.58]
-0.128
[0.67]

0.024
[0.96]

0.0689
[0.24]

0.0923
[0.38]

0.0999
[0.5]

0.1241
[0.49]

Notes:
Probability-values in []s.
See also note to Table 1.
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Table 3: Spectral Comparison

Output Consumption Investment Employment

Historical Data (1970:1-1999q4)

Bandwidth
Method Persistence

Andrews 2.2026
(0.98504)

3.0053
(1.1422)

3.2732
(1.5811)

1.1683
(0.69663)

T2
1.5954

(0.78876)
2.1652

(1.0705)
3.0097

(1.4881)
2.7219

(1.3457)

Periodicity

18 quarters
[ω=0.34907]

26 quarters
[ω=0.24166]

42 quarters
[ω=0.14960]

32 quarters
[ω=0.19635]

Stochastic Simulation (Model)

Persistence

Andrews 2.8189
(1.1836)

2.7789
(1.0915)

2.3450
(1.1281)

1.0032
(0.61407)

T2
1.9817

(0 .97574)
1.9931

(0 .98131)
2.2023

(1.0843)
4.1322

(2.0345)

Periodicity

32 quarters
[ω=0.19635]

28 Quarters
[ω=0.22440]

42 Quarters
[ω=0.14960]

34 quarters
[ω=0.18480]

Notes:

•  Standard errors in ()s.

•  Periodicity: )(max2
j

j

f ω
ω
π

.
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Table 4. Simulated Out-Of-Sample Projections

Step Mean Error RMS Error Theil U Std. Dev. N. Obs Step Mean Error RMS Error Theil U Std. Dev. N. Obs Step Mean Error RMS Error Theil U Std. Dev. N. Obs
1 -0.000802 0.001878 1.04 0.12 16 1 -0.001366 0.002248 1.25 0.26 16 1 -0.001153 0.001967 1.09 0.17 16
2 -0.001317 0.002342 1.11 0.13 15 2 -0.002094 0.002902 1.37 0.24 15 2 -0.001874 0.002737 1.29 0.18 15
3 -0.002044 0.002640 1.32 0.18 14 3 -0.003261 0.003743 1.87 0.32 14 3 -0.002926 0.003740 1.87 0.19 14
4 -0.002479 0.002821 1.86 0.09 13 4 -0.004147 0.004394 2.90 0.42 13 4 -0.003120 0.003682 2.43 0.29 13
5 -0.002988 0.003507 1.80 0.12 12 5 -0.005132 0.005496 2.82 0.63 12 5 -0.003665 0.004078 2.09 0.32 12
6 -0.003342 0.003922 1.69 0.20 11 6 -0.006013 0.006435 2.77 0.68 11 6 -0.003745 0.004213 1.82 0.31 11
7 -0.003766 0.004096 1.96 0.32 10 7 -0.006876 0.007193 3.44 0.93 10 7 -0.004063 0.004754 2.28 0.37 10
8 -0.004238 0.004396 2.47 0.28 9 8 -0.007807 0.008052 4.52 0.78 9 8 -0.004041 0.004658 2.61 0.19 9

Step Mean Error RMS Error Theil U Std. Dev. N. Obs Step Mean Error RMS Error Theil U Std. Dev. N. Obs Step Mean Error RMS Error Theil U Std. Dev. N. Obs
1 -0.000278 0.001878 1.04 0.16 16 1 -0.000263 0.002473 1.38 0.10 16 1 -0.000194 0.002933 1.63 0.12 16
2 -0.000468 0.002352 1.11 0.20 15 2 -0.000401 0.002061 0.97 0.11 15 2 -0.000265 0.003082 1.45 0.17 15
3 -0.000688 0.003054 1.53 0.19 14 3 -0.000926 0.003761 1.88 0.19 14 3 -0.000810 0.005658 2.83 0.29 14
4 -0.000626 0.002632 1.74 0.20 13 4 -0.000890 0.003259 2.15 0.53 13 4 -0.000193 0.005885 3.88 0.82 13
5 -0.000767 0.002934 1.51 0.22 12 5 -0.001171 0.004629 2.38 0.57 12 5 0.000057 0.009132 4.69 0.94 12
6 -0.000671 0.003015 1.30 0.34 11 6 -0.000392 0.003908 1.68 0.32 11 6 0.002323 0.009639 4.15 0.80 11
7 -0.000975 0.003246 1.55 0.47 10 7 -0.000398 0.004936 2.36 0.33 10 7 0.002851 0.012033 5.76 1.13 10
8 -0.001155 0.002964 1.66 0.36 9 8 0.000567 0.005213 2.93 0.37 9 8 0.007080 0.011380 6.39 1.14 9

Statistics based on one- to twelve-step-ahead forecasts of 1st difference of log of variable, from 1996Q1 to 199Q4.
Theil's U is ratio of shown RMSE to RMSE of no-change assumption.
Standard Deviation of Theil's U is calculated by a delta-method expansion based on the HAC-corrected variance-covariance of the residuals squared, using a window with as many lags as steps ahead reported.
AR(2): AR(2) in first difference with a constant.
AR(2) with exogenous variables: AR(2) in first difference with a constant and fixed exogenous regressors as used for the AWM.
AWM forecasts, no residual projection: AWM used with flat residual projection
AWM forecasts, residual projection by smooth level shift: AWM with residuals projected as average of 4 quarters previous to beginning of forecast.
AWM forecasts, residual projection by level shift: AWM with residuals projected as quarter previous to beginning of forecast.
AWM forecasts, residual projection by smooth trend shift: AWM with residuals projected as a  trend from average trend of 4 quarters previous to beginning of forecast.

GDP Deflator inflation

AWM forecasts, residual projection by smooth level shift AWM forecasts, residual projection by level shift AWM forecasts, residual projection by smooth trend shift

AR(2) AR(2) with exogenous variables AWM forecasts, no residual projection
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Table 5. Simulated Out-Of-Sample Projections, RMSE Decomposition

Step Ahead MSE/var(x) var(x)/var(x) var(f)/var(x) cov(x,f)/var(x) bias2/var(x) MSE/var(x) var(x)/var(x) var(f)/var(x) cov(x,f)/var(x) bias2/var(x) No. Obs.
1 1.966 1.000 1.288 0.499 0.675 1.792 1.000 1.488 0.368 0.039 16
2 3.882 1.000 1.411 0.174 1.819 2.865 1.000 2.048 0.148 0.113 15
3 7.184 1.000 1.457 -0.165 4.397 4.789 1.000 3.232 -0.157 0.243 14
4 6.669 1.000 1.131 0.125 4.789 3.408 1.000 2.937 0.361 0.193 13
5 8.023 1.000 1.066 0.261 6.478 4.154 1.000 3.656 0.393 0.284 12
6 8.046 1.000 1.035 0.174 6.360 4.121 1.000 3.756 0.419 0.204 11
7 9.613 1.000 1.255 -0.168 7.022 4.481 1.000 4.027 0.476 0.405 10
8 8.812 1.000 0.971 -0.105 6.632 3.568 1.000 3.206 0.590 0.542 9

Step Ahead MSE/var(x) var(x)/var(x) var(f)/var(x) cov(x,f)/var(x) bias2/var(x) MSE/var(x) var(x)/var(x) var(f)/var(x) cov(x,f)/var(x) bias2/var(x) No. Obs.
1 2.568 1.000 1.073 0.227 0.948 1.792 1.000 0.949 0.242 0.327 16
2 4.363 1.000 1.257 0.083 2.271 2.840 1.000 0.983 0.021 0.899 15
3 7.196 1.000 1.495 0.379 5.459 3.578 1.000 0.618 0.092 2.144 14
4 9.496 1.000 1.793 0.879 8.460 3.916 1.000 0.652 0.380 3.024 13
5 14.571 1.000 1.981 0.559 12.707 5.934 1.000 0.686 0.029 4.306 12
6 18.774 1.000 1.989 0.303 16.391 6.974 1.000 0.671 -0.119 5.065 11
7 22.006 1.000 1.819 0.460 20.108 7.136 1.000 0.542 0.219 6.033 10
8 26.333 1.000 1.908 0.666 24.757 7.847 1.000 0.573 0.510 7.294 9

Step Ahead: Number of steps ahead in the forecasts.
MSE: Mean-square errors of the forecasts.
var(x): (Sample) variance of actual observations.
var(f): (Sample) variance of forecasts.
cov(x,f): Covariance between actual and forecasts.
bias: Bias in the forecasts, i.e. average forecast error.

GDP Deflator, Relative RMSE Decomposition
AWM forecasts, residual projection by smooth level shiftAWM forecasts, no residual projection

AR(2)-cum-exogenous forecasts AR(2) forecasts
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Table 6. Simulated In-Sample Projections

Step Mean Error RMS Error Theil U Std. Dev. N. Obs Step Mean Error RMS Error Theil U Std. Dev. N. Obs Step Mean Error RMS Error Theil U Std. Dev. N. Obs
1 -0.000537 0.002065 0.97 0.05 40 1 -0.000502 0.001786 0.84 0.11 40 1 -0.000686 0.002437 1.15 0.15 40
2 -0.000929 0.002464 0.96 0.04 39 2 -0.000772 0.002106 0.82 0.09 39 2 -0.000970 0.002705 1.05 0.09 39
3 -0.001377 0.002669 1.02 0.05 38 3 -0.001091 0.002240 0.86 0.09 38 3 -0.001348 0.002976 1.14 0.13 38
4 -0.001713 0.002919 1.02 0.07 37 4 -0.001355 0.002395 0.84 0.10 37 4 -0.001489 0.003024 1.06 0.14 37
5 -0.001990 0.003018 1.10 0.08 36 5 -0.001545 0.002530 0.92 0.14 36 5 -0.001623 0.003110 1.14 0.17 36
6 -0.002454 0.003326 1.15 0.07 35 6 -0.001856 0.002803 0.97 0.15 35 6 -0.001938 0.003245 1.12 0.14 35
7 -0.002948 0.003647 1.12 0.08 34 7 -0.002226 0.003031 0.93 0.18 34 7 -0.002337 0.003361 1.03 0.12 34
8 -0.003341 0.003797 1.21 0.10 33 8 -0.002518 0.003160 1.01 0.24 33 8 -0.002567 0.003489 1.11 0.12 33
9 -0.003733 0.004130 1.22 0.15 32 9 -0.002733 0.003362 0.99 0.28 32 9 -0.002789 0.003630 1.07 0.12 32

10 -0.004070 0.004487 1.18 0.15 31 10 -0.002880 0.003515 0.93 0.29 31 10 -0.002939 0.003769 1.00 0.09 31
11 -0.004415 0.004767 1.23 0.15 30 11 -0.003037 0.003701 0.96 0.30 30 11 -0.003075 0.003917 1.01 0.10 30
12 -0.004815 0.005174 1.20 0.14 29 12 -0.003204 0.003920 0.91 0.27 29 12 -0.003368 0.004117 0.96 0.10 29

Step Mean Error RMS Error Theil U Std. Dev. N. Obs Step Mean Error RMS Error Theil U Std. Dev. N. Obs Step Mean Error RMS Error Theil U Std. Dev. N. Obs
1 -0.000194 0.002783 1.31 0.17 40 1 -0.001008 0.002577 1.21 0.18 40 1 -0.001930 0.003996 1.88 0.34 40
2 -0.000386 0.003059 1.19 0.12 39 2 -0.001477 0.002954 1.15 0.15 39 2 -0.001955 0.003257 1.27 0.16 39
3 -0.000608 0.003141 1.21 0.14 38 3 -0.002114 0.003425 1.31 0.14 38 3 -0.002876 0.004019 1.54 0.21 38
4 -0.000702 0.003299 1.15 0.13 37 4 -0.002315 0.003569 1.25 0.13 37 4 -0.002753 0.003820 1.33 0.16 37
5 -0.000735 0.003303 1.21 0.16 36 5 -0.002624 0.003677 1.34 0.15 36 5 -0.003310 0.004240 1.55 0.18 36
6 -0.000984 0.003759 1.30 0.15 35 6 -0.003032 0.004192 1.45 0.15 35 6 -0.003739 0.004642 1.61 0.17 35
7 -0.001363 0.004315 1.33 0.12 34 7 -0.003626 0.004684 1.44 0.13 34 7 -0.004430 0.005116 1.57 0.13 34
8 -0.001593 0.004535 1.44 0.14 33 8 -0.003936 0.005102 1.63 0.17 33 8 -0.004630 0.005364 1.71 0.17 33
9 -0.001872 0.004883 1.44 0.09 32 9 -0.004278 0.005460 1.61 0.11 32 9 -0.005048 0.005769 1.70 0.11 32

10 -0.002091 0.005247 1.39 0.07 31 10 -0.004554 0.005842 1.54 0.11 31 10 -0.005311 0.006084 1.61 0.08 31
11 -0.002305 0.005478 1.42 0.10 30 11 -0.004826 0.006218 1.61 0.19 30 11 -0.005641 0.006423 1.66 0.13 30
12 -0.002692 0.005906 1.37 0.16 29 12 -0.005301 0.006867 1.60 0.20 29 12 -0.006032 0.006816 1.59 0.16 29

Statistics based on one- to twelve-step-ahead forecasts of 1st difference of log of variable, from 1996Q1 to 199Q4.
Theil's U is ratio of shown RMSE to RMSE of no-change assumption.
Standard Deviation of Theil's U is calculated by a delta-method expansion based on the HAC-corrected variance-covariance of the residuals squared, using a window with as many lags as steps ahead reported.
AR(2): AR(2) in first difference with a constant.
AR(2) with exogenous variables: AR(2) in first difference with a constant and fixed exogenous regressors as used for the AWM.
AWM forecasts, no residual projection: AWM used with flat residual projection
AWM forecasts, residual projection by smooth level shift: AWM with residuals projected as average of 4 quarters previous to beginning of forecast.
AWM forecasts, residual projection by corrected level shift: AWM with residuals projected as quarter previous to beginning of forecast, corrected in subsequent periods by EqCM of corresponding equation.
AWM forecasts, residual projection by corrected outlier: AWM with residuals projected as quarter previous to beginning of forecast corrected by the EqCM of the equation.

GDP Deflator inflation

AWM forecasts, residual projection by smooth level shift AWM forecasts, residual projection by corrected level shift AWM forecasts, residual projection by corrected outlier

AR(2) AR(2) with exogenous variables AWM forecasts, no residual projection
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Table 7. Simulated In-Sample Projections, RMSE Decomposition

Step Ahead MSE/var(x) var(x)/var(x) var(f)/var(x) cov(x,f)/var(x) bias2/var(x) MSE/var(x) var(x)/var(x) var(f)/var(x) cov(x,f)/var(x) bias2/var(x) No. Obs.
1 0.440 1.000 0.931 0.763 0.035 0.574 1.000 1.176 0.803 0.003 40
2 0.564 1.000 0.861 0.685 0.072 0.720 1.000 1.300 0.796 0.011 39
3 0.693 1.000 0.657 0.553 0.142 0.771 1.000 1.286 0.772 0.029 38
4 0.723 1.000 0.690 0.571 0.175 0.860 1.000 1.420 0.799 0.039 37
5 0.747 1.000 0.609 0.533 0.204 0.843 1.000 1.550 0.874 0.042 36
6 0.927 1.000 0.705 0.554 0.331 1.245 1.000 2.036 0.938 0.085 35
7 1.187 1.000 0.810 0.599 0.574 1.958 1.000 2.797 1.017 0.195 34
8 1.428 1.000 0.934 0.640 0.773 2.412 1.000 3.409 1.147 0.298 33
9 1.819 1.000 1.051 0.653 1.074 3.293 1.000 4.124 1.157 0.484 32

10 2.062 1.000 1.118 0.655 1.253 3.995 1.000 4.523 1.081 0.634 31
11 2.280 1.000 1.129 0.627 1.405 4.460 1.000 4.755 1.042 0.789 30
12 2.842 1.000 1.342 0.701 1.901 5.848 1.000 5.617 0.992 1.215 29

Step Ahead MSE/var(x) var(x)/var(x) var(f)/var(x) cov(x,f)/var(x) bias2/var(x) MSE/var(x) var(x)/var(x) var(f)/var(x) cov(x,f)/var(x) bias2/var(x) No. Obs.
1 0.236 1.000 0.834 0.808 0.019 0.316 1.000 0.857 0.782 0.021 40
2 0.342 1.000 0.811 0.758 0.046 0.468 1.000 0.836 0.717 0.066 39
3 0.392 1.000 0.746 0.724 0.093 0.557 1.000 0.728 0.659 0.148 38
4 0.453 1.000 0.720 0.706 0.145 0.673 1.000 0.689 0.623 0.232 37
5 0.495 1.000 0.677 0.683 0.185 0.704 1.000 0.621 0.612 0.306 36
6 0.692 1.000 0.665 0.638 0.304 0.974 1.000 0.649 0.602 0.530 35
7 0.966 1.000 0.646 0.600 0.521 1.398 1.000 0.691 0.603 0.913 34
8 1.171 1.000 0.640 0.606 0.744 1.691 1.000 0.714 0.666 1.309 33
9 1.561 1.000 0.586 0.528 1.031 2.355 1.000 0.790 0.679 1.924 32

10 1.793 1.000 0.474 0.442 1.204 2.921 1.000 0.755 0.619 2.403 31
11 2.035 1.000 0.425 0.380 1.370 3.377 1.000 0.660 0.590 2.896 30
12 2.577 1.000 0.384 0.264 1.721 4.488 1.000 0.637 0.517 3.886 29

Step Ahead: Number of steps ahead in the forecasts.
MSE: Mean-square errors of the forecasts.
var(x): (Sample) variance of actual observations.
var(f): (Sample) variance of forecasts.
cov(x,f): Covariance between actual and forecasts.
bias: Bias in the forecasts, i.e. average forecast error.

GDP Deflator, Relative RMSE Decomposition

AR(2)-cum-exogenous forecasts

AWM forecasts, residual projection by smooth level shiftAWM forecasts, no residual projection

AR(2) forecasts
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Table 8. Simulated In-Sample Projections

Step Mean Error RMS Error Theil U Std. Dev. N. Obs Step Mean Error RMS Error Theil U Std. Dev. N. Obs Step Mean Error RMS Error Theil U Std. Dev. N. Obs
1 -0.000713 0.004162 0.85 0.14 40 1 -0.000621 0.003882 0.79 0.12 40 1 -0.000705 0.005441 1.11 0.16 40
2 -0.001055 0.004307 0.77 0.15 39 2 -0.000763 0.003917 0.70 0.10 39 2 -0.000936 0.005647 1.01 0.16 39
3 -0.001200 0.004528 0.78 0.17 38 3 -0.000798 0.004050 0.69 0.11 38 3 -0.001068 0.005263 0.90 0.13 38
4 -0.001343 0.004692 0.65 0.11 37 4 -0.000922 0.004065 0.57 0.08 37 4 -0.001143 0.005229 0.73 0.09 37
5 -0.001366 0.004695 0.67 0.16 36 5 -0.001019 0.004100 0.59 0.11 36 5 -0.001045 0.005324 0.76 0.12 36
6 -0.001413 0.004756 0.67 0.17 35 6 -0.001272 0.003941 0.55 0.11 35 6 -0.001114 0.005375 0.76 0.13 35
7 -0.001503 0.004817 0.64 0.14 34 7 -0.001441 0.003924 0.52 0.09 34 7 -0.001242 0.005368 0.72 0.10 34
8 -0.001485 0.004863 0.69 0.16 33 8 -0.001643 0.003878 0.55 0.10 33 8 -0.001057 0.005175 0.73 0.11 33
9 -0.001441 0.004908 0.73 0.13 32 9 -0.001692 0.003938 0.58 0.07 32 9 -0.000938 0.005129 0.76 0.08 32

10 -0.001639 0.004920 0.67 0.09 31 10 -0.001929 0.003870 0.53 0.06 31 10 -0.001170 0.005201 0.71 0.07 31
11 -0.001387 0.004708 0.68 0.09 30 11 -0.001771 0.003740 0.54 0.07 30 11 -0.000983 0.005169 0.74 0.07 30
12 -0.001250 0.004683 0.63 0.06 29 12 -0.001739 0.003772 0.51 0.08 29 12 -0.000978 0.005245 0.71 0.07 29

Step Mean Error RMS Error Theil U Std. Dev. N. Obs Step Mean Error RMS Error Theil U Std. Dev. N. Obs Step Mean Error RMS Error Theil U Std. Dev. N. Obs
1 -0.000135 0.005423 1.11 0.15 40 1 0.000085 0.005856 1.19 0.16 40 1 -0.000189 0.008076 1.65 0.29 40
2 -0.000292 0.005546 1.00 0.14 39 2 -0.000282 0.006044 1.09 0.17 39 2 -0.001187 0.005761 1.03 0.16 39
3 -0.000323 0.005313 0.91 0.12 38 3 -0.000781 0.006251 1.07 0.17 38 3 -0.002039 0.005915 1.01 0.16 38
4 -0.000545 0.006119 0.85 0.10 37 4 -0.000945 0.006029 0.84 0.12 37 4 -0.001738 0.005834 0.81 0.09 37
5 -0.000446 0.006611 0.94 0.10 36 5 -0.000978 0.006686 0.95 0.14 36 5 -0.001934 0.005851 0.83 0.15 36
6 -0.000538 0.006803 0.96 0.07 35 6 -0.001023 0.007187 1.01 0.15 35 6 -0.002044 0.005949 0.84 0.16 35
7 -0.000728 0.006788 0.91 0.06 34 7 -0.001465 0.006725 0.90 0.09 34 7 -0.002426 0.006121 0.82 0.13 34
8 -0.000559 0.006527 0.92 0.06 33 8 -0.001075 0.006911 0.97 0.13 33 8 -0.001723 0.005935 0.84 0.15 33
9 -0.000466 0.006422 0.95 0.08 32 9 -0.001094 0.006281 0.93 0.14 32 9 -0.002073 0.005845 0.87 0.12 32

10 -0.000717 0.006544 0.89 0.08 31 10 -0.001374 0.006225 0.85 0.11 31 10 -0.002372 0.006037 0.82 0.09 31
11 -0.000608 0.006532 0.94 0.07 30 11 -0.001275 0.006388 0.92 0.09 30 11 -0.002271 0.005880 0.85 0.08 30
12 -0.000617 0.006374 0.86 0.08 29 12 -0.001493 0.006889 0.93 0.12 29 12 -0.002324 0.005896 0.79 0.07 29

Statistics based on one- to twelve-step-ahead forecasts of 1st difference of log of variable, from 1996Q1 to 199Q4.
Theil's U is ratio of shown RMSE to RMSE of no-change assumption.
Standard Deviation of Theil's U is calculated by a delta-method expansion based on the HAC-corrected variance-covariance of the residuals squared, using a window with as many lags as steps ahead reported.
AR(2): AR(2) in first difference with a constant.
AR(2) with exogenous variables: AR(2) in first difference with a constant and fixed exogenous regressors as used for the AWM.
AWM forecasts, no residual projection: AWM used with flat residual projection
AWM forecasts, residual projection by smooth level shift: AWM with residuals projected as average of 4 quarters previous to beginning of forecast.
AWM forecasts, residual projection by corrected level shift: AWM with residuals projected as quarter previous to beginning of forecast, corrected in subsequent periods by EqCM of corresponding equation.
AWM forecasts, residual projection by corrected outlier: AWM with residuals projected as quarter previous to beginning of forecast corrected by the EqCM of the equation.

GDP growth

AWM forecasts, residual projection by smooth level shift AWM forecasts, residual projection by corrected level shift AWM forecasts, residual projection by corrected outlier

AR(2) AR(2) with exogenous variables AWM forecasts, no residual projection
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Table 9. Simulated In-Sample Projections

Step Mean Error RMS Error Theil U Std. Dev. N. Obs Step Mean Error RMS Error Theil U Std. Dev. N. Obs Step Mean Error RMS Error Theil U Std. Dev. N. Obs
1 -0.000308 0.001909 0.92 0.04 40 1 -0.000276 0.001801 0.86 0.08 40 1 -0.000188 0.001447 0.69 0.14 40
2 -0.000590 0.002090 0.94 0.04 39 2 -0.000448 0.002104 0.95 0.11 39 2 -0.000435 0.001944 0.87 0.15 39
3 -0.000831 0.002212 0.99 0.06 38 3 -0.000596 0.002390 1.07 0.12 38 3 -0.000700 0.002329 1.04 0.16 38
4 -0.001196 0.002508 1.03 0.04 37 4 -0.000706 0.002528 1.04 0.09 37 4 -0.000917 0.002464 1.01 0.16 37
5 -0.001568 0.002841 1.01 0.06 36 5 -0.000807 0.002667 0.95 0.08 36 5 -0.001091 0.002602 0.93 0.13 36
6 -0.001949 0.002920 1.10 0.08 35 6 -0.000980 0.002571 0.97 0.09 35 6 -0.001384 0.002695 1.01 0.14 35
7 -0.002326 0.003262 1.11 0.08 34 7 -0.001132 0.002550 0.87 0.08 34 7 -0.001690 0.002898 0.99 0.16 34
8 -0.002793 0.003472 1.14 0.09 33 8 -0.001333 0.002398 0.79 0.08 33 8 -0.001999 0.003035 1.00 0.14 33
9 -0.003147 0.003691 1.16 0.10 32 9 -0.001504 0.002417 0.76 0.11 32 9 -0.002220 0.003188 1.01 0.15 32

10 -0.003448 0.003947 1.20 0.08 31 10 -0.001651 0.002533 0.77 0.12 31 10 -0.002444 0.003323 1.01 0.16 31
11 -0.003814 0.004309 1.17 0.09 30 11 -0.001785 0.002708 0.73 0.11 30 11 -0.002658 0.003465 0.94 0.13 30
12 -0.004049 0.004525 1.19 0.10 29 12 -0.001801 0.002774 0.73 0.12 29 12 -0.002849 0.003646 0.96 0.16 29

Step Mean Error RMS Error Theil U Std. Dev. N. Obs Step Mean Error RMS Error Theil U Std. Dev. N. Obs Step Mean Error RMS Error Theil U Std. Dev. N. Obs
1 -0.000220 0.001555 0.75 0.15 40 1 -0.000181 0.001468 0.71 0.14 40 1 -0.000182 0.002099 1.01 0.20 40
2 -0.000321 0.002282 1.03 0.18 39 2 -0.000663 0.002048 0.92 0.16 39 2 -0.001224 0.002780 1.25 0.20 39
3 -0.000462 0.002843 1.27 0.21 38 3 -0.001130 0.002513 1.12 0.17 38 3 -0.001692 0.002929 1.31 0.19 38
4 -0.000557 0.003024 1.24 0.17 37 4 -0.001469 0.002806 1.15 0.15 37 4 -0.001953 0.003047 1.25 0.15 37
5 -0.000602 0.003172 1.13 0.18 36 5 -0.001756 0.002979 1.06 0.13 36 5 -0.002286 0.003261 1.16 0.13 36
6 -0.000748 0.003415 1.28 0.17 35 6 -0.002195 0.003345 1.26 0.16 35 6 -0.002911 0.003756 1.41 0.17 35
7 -0.000986 0.003724 1.27 0.13 34 7 -0.002688 0.003761 1.28 0.15 34 7 -0.003431 0.004219 1.44 0.17 34
8 -0.001271 0.004014 1.32 0.09 33 8 -0.003123 0.004222 1.39 0.14 33 8 -0.003833 0.004535 1.49 0.15 33
9 -0.001531 0.004163 1.31 0.12 32 9 -0.003454 0.004464 1.41 0.19 32 9 -0.004186 0.004874 1.54 0.19 32

10 -0.001809 0.004360 1.32 0.18 31 10 -0.003832 0.005108 1.55 0.30 31 10 -0.004593 0.005278 1.60 0.27 31
11 -0.002100 0.004673 1.27 0.15 30 11 -0.004182 0.005384 1.46 0.24 30 11 -0.004991 0.005660 1.54 0.22 30
12 -0.002368 0.005124 1.35 0.23 29 12 -0.004555 0.005845 1.54 0.29 29 12 -0.005305 0.006003 1.58 0.27 29

Statistics based on one- to twelve-step-ahead forecasts of 1st difference of log of variable, from 1996Q1 to 199Q4.
Theil's U is ratio of shown RMSE to RMSE of no-change assumption.
Standard Deviation of Theil's U is calculated by a delta-method expansion based on the HAC-corrected variance-covariance of the residuals squared, using a window with as many lags as steps ahead reported.
AR(2): AR(2) in first difference with a constant.
AR(2) with exogenous variables: AR(2) in first difference with a constant and fixed exogenous regressors as used for the AWM.
AWM forecasts, no residual projection: AWM used with flat residual projection
AWM forecasts, residual projection by smooth level shift: AWM with residuals projected as average of 4 quarters previous to beginning of forecast.
AWM forecasts, residual projection by corrected level shift: AWM with residuals projected as quarter previous to beginning of forecast, corrected in subsequent periods by EqCM of corresponding equation.
AWM forecasts, residual projection by corrected outlier: AWM with residuals projected as quarter previous to beginning of forecast corrected by the EqCM of the equation.

Consumption Deflator inflation

AWM forecasts, residual projection by smooth level shift AWM forecasts, residual projection by corrected level shift AWM forecasts, residual projection by corrected outlier

AR(2) AR(2) with exogenous variables AWM forecasts, no residual projection
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Figures 1: Spectral Densities (Historical and Model-Generated Data)

Note: Here we present results from the Andrews Bandwidth procedure, though the conclusions are the same across
both methods.
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Figure 2. Forecast Series

GDP growth (logs)

1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998
-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

Measures of Inflation (logs)

1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998
-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
GDP defl.
Cons. Defl.





56

ANNEX: RECURSIVELY ESTIMATED PARAMETERS

Simulated out-of-sample forecasts are conventionally made using no information from periods
within the forecast horizon, except maybe for the use of final, fully-revised datasets maybe not
available at the time. The exercise described in the main text actually did use information
coming from the forecast period, i.e. the exchange and interest rates and external and fiscal
variables, but re-estimating the model was nevertheless seen as a crucial part of the exercise.
This was so because of the desire to separate as far as possible forecast failure due to unstable
parameters and due to deterministic shifts in the data. In order to achieve this, the model was re-
estimated for the periods 1995Q4 to 1999Q3 using either the standard equations in the model or
simplified versions in which dummy variables for the period were dropped. The model was
found to be broadly stable for the period, with parameters in general changing not much. As a
consequence, forecast performance compared to benchmark models probably depends
considerably more on residual projection than on parameter instability.

Some insight into stability properties of the parameters of the model can be gained with the table
and graph included in this annex. The table records the value of the recursively re-estimated
parameters for the period, showing only 4th quarter results to condense information. Results
reported under the heading �original� recall original values for the parameters. Results are
reported naming parameters following the convention in Fagan et al. (op. cit.), with the
exception of consumption and stock equations, which have been re-specified. Parameters shown
under �original� may differ slightly from those reported in the previous reference due to slight
changes in the database.39

The graph shows, for the period under analysis, recursive estimation residuals superimposed on a
same graph. Equations are labelled according to the name of the variable they define, again
following conventions set in Fagan et al. (op. cit.). The evident overlap of most residuals is
another indication that equations were relatively stable throughout the period.

                                                          
39 The database used was a version of the original database distributed with Fagan et al. (2001) and downloadable from
www.ecb.int. The database used here was extended until 1999Q4 and was used in Detken et al. (2002). The extension
involved slight historical revisions to some variables, which explains for the mentioned differences.
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  Table A.1. Selection of Recursive Estimated Parameters
Equation Parameter Original 1995q4 1996q4 1997q4 1998q4 1999q4

Employment LNN.DLLNT 0.692276 0.683772 0.682438 0.691779 0.713435 0.691929
LNN.DLYERADJ 0.180177 0.183676 0.183327 0.180310 0.167283 0.170650
LNN.DLWRRADJ -0.120938 -0.129171 -0.127726 -0.121410 -0.120343 -0.119579
LNN.DLWRRADJ1 -0.125018 -0.127474 -0.127635 -0.125020 -0.121545 -0.128524
LNN.D872 0.004483 0.004585 0.004609 0.004490 0.004496 0.004343
LNN.D841 -0.004429 -0.004487 -0.004503 -0.004431 -0.004187 -0.004536
LNN.ECM -0.081495 -0.082260 -0.082408 -0.081525 -0.082152 -0.068280

Investment ITR.D894 0.020823 0.020511 0.020930 0.020983 0.021269 0.021455
ITR.DITY1 0.168826 0.247538 0.174441 0.167245 0.142753 0.141033
ITR.ECM 0.539096 0.504877 0.558784 0.554734 0.591342 0.606284
ITR.ADJ 0.012310 0.012285 0.012396 0.012489 0.012645 0.012848

Wages WRN.DLWRCQ4 0.273892 0.263043 0.255321 0.250201 0.252917 0.282311
WRN.DDLPCD -0.919736 -0.797606 -0.810661 -0.814063 -0.781790 -0.764833
WRN.DDLPCD1 -0.571055 -0.390019 -0.391060 -0.401781 -0.397747 -0.371002
WRN.DDLPCD2 -0.470158 -0.370688 -0.374635 -0.376440 -0.422863 -0.426678
WRN.DDLPCD3 -0.334405 -0.268985 -0.280349 -0.294451 -0.289109 -0.301979
WRN.DDLPROD -0.562628 -0.549744 -0.545439 -0.537485 -0.547781 -0.554636
WRN.DDLPROD1 -0.456273 -0.437333 -0.436445 -0.430985 -0.447532 -0.460392
WRN.DDLPROD2 -0.399817 -0.392926 -0.391432 -0.393959 -0.410047 -0.429397
WRN.DDLPROD3 -0.261245 -0.272927 -0.272842 -0.272394 -0.297906 -0.315672
WRN.LURX_GAP1 -0.014744 -0.021272 -0.021843 -0.022551 -0.022536 -0.021635
WRN.I81Q1 -0.004171 -0.010014 -0.010113 -0.010121 -0.010444 -0.010449
WRN.I84Q2 -0.012449 -0.016239 -0.016169 -0.015979 -0.016072 -0.015970

GDP deflator YFD.CST 0.003920 0.003995 0.003993 0.003920 0.003963 0.004016
YFD.DLYFD1 0.229684 0.226243 0.225394 0.229684 0.227293 0.219794
YFD.DLULT 0.246086 0.251419 0.249390 0.246086 0.245890 0.230702
YFD.DLULT1 0.083541 0.078281 0.082691 0.083541 0.090131 0.102890
YFD.DLULT2 0.155765 0.157398 0.155377 0.155765 0.151721 0.159442
YFD.DLMTD1 0.031486 0.032161 0.031956 0.031486 0.031346 0.032186
YFD.ECM -0.045006 -0.042939 -0.043548 -0.045006 -0.043234 -0.041669

Consumption deflatorPCD.ECM.LYED 0.940751 0.992626 0.991629 0.990656 0.989898 0.989107
PCD.ECM.LMTD 0.059249 0.007374 0.008371 0.009344 0.010102 0.010893
PCD.CST 0.001263 0.000652 0.000717 0.000709 0.000740 0.000763
PCD.DLPCD4 0.188246 0.208861 0.208447 0.207154 0.205507 0.203585
PCD.DLYED 0.445458 0.450697 0.448685 0.450976 0.448738 0.441644
PCD.DLYED1 0.226345 0.243509 0.242692 0.242073 0.243997 0.252726
PCD.DLMTD 0.071909 0.069102 0.069417 0.070809 0.070087 0.069731
PCD.DLMTD1 0.025380 0.026242 0.026219 0.024868 0.025318 0.024661
PCD.DLCOMPREEN 0.004465 0.004483 0.004479 0.004373 0.004510 0.004672
PCD.ECM -0.060559 -0.042746 -0.043246 -0.043550 -0.043238 -0.043549
PCD.DI82Q1 -0.003529 -0.003579 -0.003572 -0.003584 -0.003577 -0.003566
PCD.DI92Q4 -0.002979 -0.003081 -0.003081 -0.003084 -0.003086 -0.003108
PCD.I77Q4I78Q1 -0.003981 -0.004023 -0.004018 -0.004017 -0.004007 -0.004006

Investment deflator ITD.CST 0.004648 0.005854 0.004583 0.004642 0.004919 0.004811
ITD.DDLYFD -0.368482 -0.367276 -0.363803 -0.367348 -0.355295 -0.365059
ITD.DDLMTD 0.111071 0.109045 0.109335 0.110476 0.111505 0.113977
ITD.DLITDYFD1 0.313957 0.309011 0.309662 0.310311 0.306023 0.296158
ITD.DLITDYFD4 0.207904 0.206759 0.211355 0.210999 0.219258 0.238621
ITD.DLITDYFD7 0.169020 0.168403 0.165539 0.168244 0.165021 0.166495
ITD.DLITDMTD1 -0.116393 -0.118348 -0.116749 -0.116844 -0.116678 -0.118108
ITD.DLITDMTD5 0.047888 0.046081 0.048674 0.048114 0.048097 0.049652
ITD.DLITDMTD6 0.037784 0.035204 0.036635 0.037602 0.037548 0.040126
ITD.ECM1 -0.052662 -0.062607 -0.051976 -0.052571 -0.055305 -0.054783
ITD.ECM2 -0.012261 -0.012873 -0.012128 -0.012233 -0.012725 -0.012951

Consumption PCR.CST -0.179412 -0.214655 -0.219753 -0.223782 -0.219428 -0.204340
PCR.DLPYR 0.650734 0.643854 0.645894 0.650466 0.646259 0.638657
PCR.DLSTR -0.342388 -0.355225 -0.365362 -0.374164 -0.370326 -0.367107
PCR.DURX -0.629524 -0.788679 -0.782355 -0.788942 -0.822881 -0.810950
PCR.ECM.LPYR -0.101508 -0.113101 -0.112870 -0.114631 -0.110789 -0.102438
PCR.ECM.LWLR -0.051959 -0.062463 -0.064086 -0.065255 -0.064121 -0.059840
PCR.I93Q1 -0.008909 -0.008790 -0.008816 -0.008692 -0.008790 -0.009047

Variation of Stocks LSR.CST -0.000243 -0.005395 -0.005560 -0.005646 -0.005734 -0.005653
LSR.DLSR1 0.737271 0.754211 0.755744 0.750514 0.752620 0.755519
LSR.DLSTR -0.146929 -0.143087 -0.144643 -0.125457 -0.130754 -0.136393
LSR.DYER 0.314350 0.306871 0.308657 0.306798 0.302035 0.303639
LSR.ECM -0.034750 -0.025073 -0.025249 -0.025958 -0.026715 -0.026384
LSR.LSRYER -0.098435 -0.097457 -0.097609 -0.098435 -0.099109 -0.098928

Exports XTR.CST 0.222518 0.280269 0.247217 0.202111 0.216763 0.219860
XTR.DLXTDYWDX1 -0.377152 -0.379655 -0.369044 -0.368404 -0.358968 -0.363958
XTR.DLXTRYWRX7 0.156410 0.172929 0.197856 0.148231 0.143344 0.135790
XTR.ECM -0.121453 -0.148866 -0.133110 -0.111407 -0.118791 -0.120393
XTR.LXTDYWDX1 -0.097625 -0.074571 -0.084366 -0.104097 -0.100995 -0.101605
XTR.TIME 0.000989 0.001090 0.001029 0.000937 0.000979 0.000990

Imports MTR.ECM.LMTDYED -0.285416 -0.266180 -0.271016 -0.285416 -0.303068 -0.321489
MTR.ECM.TIME 0.003407 0.003288 0.003311 0.003407 0.003469 0.003528
MTR.CST -0.158258 -0.169305 -0.171293 -0.158258 -0.138373 -0.133373
MTR.DLFDD 2.021422 1.986599 1.995031 2.021422 2.034089 2.038034
MTR.ECM -0.086131 -0.092455 -0.093544 -0.086131 -0.075083 -0.072275
MTR.D743 0.016717 0.016817 0.016916 0.016717 0.016185 0.016313

Export deflator XTD.CST -0.004465 -0.003598 -0.004147 -0.004465 -0.004735 -0.004804
XTD.DLXTD1 0.236281 0.246397 0.242103 0.236281 0.249249 0.260540
XTD.DLYED 0.720610 0.671128 0.701749 0.720601 0.725697 0.725177
XTD.DLEEN 0.119249 0.122203 0.122809 0.119249 0.120750 0.119498
XTD.DLMTD 0.219660 0.221619 0.219710 0.219660 0.213592 0.205837
XTD.ECM -0.034589 -0.037129 -0.036290 -0.034589 -0.032859 -0.031714
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Figure A
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